A postnatal role for embryonic myosin revealed by MYH3 mutations that alter TGFβ signaling and cause autosomal dominant spondylocarpotarsal synostosis

Jennifer Zieba, Wenjuan Zhang, Jessica X. Chong, Kimberly N. Forlenza, Jorge H. Martin, Kelly Heard, Dorothy K. Grange, Merlin G. Butler, Tjitske Kleefstra, Ralph S. Lachman, Deborah Nickerson, Michael Regnier, Daniel H. Cohn, Michael Bamshad, Deborah Krakow

Research output: Contribution to journalArticlepeer-review

17 Scopus citations

Abstract

Spondylocarpotarsal synostosis (SCT) is a skeletal disorder characterized by progressive vertebral, carpal and tarsal fusions, and mild short stature. The majority of affected individuals have an autosomal recessive form of SCT and are homozygous or compound heterozygous for nonsense mutations in the gene that encodes the cytoskeletal protein filamin B (FLNB), but a subset do not have FLNB mutations. Exome sequence analysis of three SCT patients negative for FLNB mutations identified an autosomal dominant form of the disease due to heterozygosity for missense or nonsense mutations in MYH3, which encodes embryonic myosin. Cells transfected with the MYH3 missense mutations had reduced TGFβ signaling, revealing a regulatory role for embryonic myosin in the TGFβ signaling pathway. In wild-type mice, there was persistent postnatal expression of embryonic myosin in the small muscles joining the neural arches of the spine suggesting that loss of myosin function in these muscles contribute to the disease. Our findings demonstrate that dominant mutations in MYH3 underlie autosomal dominant SCT, identify a postnatal role for embryonic myosin and suggest that altered regulation of signal transduction in the muscles within the spine may lead to the development of vertebral fusions.

Original languageEnglish
Article number41803
JournalScientific reports
Volume7
DOIs
StatePublished - Feb 16 2017

Fingerprint

Dive into the research topics of 'A postnatal role for embryonic myosin revealed by MYH3 mutations that alter TGFβ signaling and cause autosomal dominant spondylocarpotarsal synostosis'. Together they form a unique fingerprint.

Cite this