TY - JOUR
T1 - A novel proton counting detector and method for the validation of tissue and implant material maps for Monte Carlo dose calculation
AU - Charyyev, Serdar
AU - Chang, Chih Wei
AU - Harms, Joseph
AU - Oancea, Cristina
AU - Yoon, S. Tim
AU - Yang, Xiaofeng
AU - Zhang, Tiezhi
AU - Zhou, Jun
AU - Lin, Liyong
N1 - Publisher Copyright:
© 2021 Institute of Physics and Engineering in Medicine.
PY - 2021/2/21
Y1 - 2021/2/21
N2 - The presence of artificial implants complicates the delivery of proton therapy due to inaccurate characterization of both the implant and the surrounding tissues. In this work, we describe a method to characterize implant and human tissue mimicking materials in terms of relative stopping power (RSP) using a novel proton counting detector. Each proton is tracked by directly measuring the deposited energy along the proton track using a fast, pixelated spectral detector AdvaPIX-TPX3 (TPX3). We considered three scenarios to characterize the RSPs. First, in-air measurements were made in the presence of metal rods (Al, Ti and CoCr) and bone. Then, measurements of energy perturbations in the presence of metal implants and bone in an anthropomorphic phantom were performed. Finally, sampling of cumulative stopping power (CSP) of the phantom were made at different locations of the anthropomorphic phantom. CSP and RSP information were extracted from energy spectra at each beam path. To quantify the RSP of metal rods we used the shift in the most probable energy (MPE) of CSP from the reference CSP without a rod. Overall, the RSPs were determined as 1.48, 2.06, 3.08, and 5.53 from in-air measurements; 1.44, 1.97, 2.98, and 5.44 from in-phantom measurements, for bone, Al, Ti and CoCr, respectively. Additionally, we sampled CSP for multiple paths of the anthropomorphic phantom ranging from 18.63 to 25.23 cm deriving RSP of soft tissues and bones in agreement within 1.6% of TOPAS simulations. Using minimum error of these multiple CSP, optimal mass densities were derived for soft tissue and bone and they are within 1% of vendor-provided nominal densities. The preliminary data obtained indicates the proposed novel method can be used for the validation of material and density maps, required by proton Monte Carlo Dose calculation, provided by competing multi-energy computed tomography and metal artifact reduction techniques.
AB - The presence of artificial implants complicates the delivery of proton therapy due to inaccurate characterization of both the implant and the surrounding tissues. In this work, we describe a method to characterize implant and human tissue mimicking materials in terms of relative stopping power (RSP) using a novel proton counting detector. Each proton is tracked by directly measuring the deposited energy along the proton track using a fast, pixelated spectral detector AdvaPIX-TPX3 (TPX3). We considered three scenarios to characterize the RSPs. First, in-air measurements were made in the presence of metal rods (Al, Ti and CoCr) and bone. Then, measurements of energy perturbations in the presence of metal implants and bone in an anthropomorphic phantom were performed. Finally, sampling of cumulative stopping power (CSP) of the phantom were made at different locations of the anthropomorphic phantom. CSP and RSP information were extracted from energy spectra at each beam path. To quantify the RSP of metal rods we used the shift in the most probable energy (MPE) of CSP from the reference CSP without a rod. Overall, the RSPs were determined as 1.48, 2.06, 3.08, and 5.53 from in-air measurements; 1.44, 1.97, 2.98, and 5.44 from in-phantom measurements, for bone, Al, Ti and CoCr, respectively. Additionally, we sampled CSP for multiple paths of the anthropomorphic phantom ranging from 18.63 to 25.23 cm deriving RSP of soft tissues and bones in agreement within 1.6% of TOPAS simulations. Using minimum error of these multiple CSP, optimal mass densities were derived for soft tissue and bone and they are within 1% of vendor-provided nominal densities. The preliminary data obtained indicates the proposed novel method can be used for the validation of material and density maps, required by proton Monte Carlo Dose calculation, provided by competing multi-energy computed tomography and metal artifact reduction techniques.
KW - Let
KW - Monte carlo dose calculation
KW - Multi energy computed tomography
KW - Proton counting detector
KW - Proton therapy imaging
KW - Spot scanning proton therapy
KW - Surgical implant
UR - http://www.scopus.com/inward/record.url?scp=85101813465&partnerID=8YFLogxK
U2 - 10.1088/1361-6560/abd22e
DO - 10.1088/1361-6560/abd22e
M3 - Article
C2 - 33296888
AN - SCOPUS:85101813465
SN - 0031-9155
VL - 66
JO - Physics in medicine and biology
JF - Physics in medicine and biology
IS - 4
M1 - 045003
ER -