TY - JOUR
T1 - A Novel Method of Cone Beam CT Projection Binning Based on Image Registration
AU - Park, Seonyeong
AU - Kim, Siyong
AU - Yi, Byongyong
AU - Hugo, Geoffrey
AU - Gach, H. Michael
AU - Motai, Yuichi
N1 - Publisher Copyright:
© 2017 IEEE.
PY - 2017/8
Y1 - 2017/8
N2 - Accurate sorting of beam projections is important in 4D cone beam computed tomography (4D CBCT) to improve the quality of the reconstructed 4D CBCT image by removing motion-induced artifacts. We propose image registration-based projection binning (IRPB), a novel marker-less binning method for 4D CBCT projections, which combines intensity-based feature point detection and trajectory tracking using random sample consensus. IRPB extracts breathing motion and phases by analyzing tissue feature point trajectories. We conducted experiments with two phantom and six patient datasets, including both regular and irregular respirations. In experiments, we compared the performance of the proposed IRPB, Amsterdam Shroud method (AS), Fourier transform-based method (FT), and local intensity feature tracking method (LIFT). The results showed that the average absolute phase shift of IRPB was 3.74 projections and 0.48 projections less than that of FT and LIFT, respectively. AS lost the most breathing cycles in the respiration extraction for the five patient datasets, so we could not compare the average absolute phase shift between IRPB and AS. Based on the peak signal-to-noise ratio (PSNR) of the reconstructed 4D CBCT images, IRPB had 5.08, 1.05, and 2.90 dB larger PSNR than AS, FT, and LIFT, respectively. The average Structure SIMilarity Index (SSIM) of the 4D CBCT image reconstructed by IRPB, AS, and LIFT were 0.87, 0.74, 0.84, and 0.70, respectively. These results demonstrated that IRPB has superior performance to the other standard methods.
AB - Accurate sorting of beam projections is important in 4D cone beam computed tomography (4D CBCT) to improve the quality of the reconstructed 4D CBCT image by removing motion-induced artifacts. We propose image registration-based projection binning (IRPB), a novel marker-less binning method for 4D CBCT projections, which combines intensity-based feature point detection and trajectory tracking using random sample consensus. IRPB extracts breathing motion and phases by analyzing tissue feature point trajectories. We conducted experiments with two phantom and six patient datasets, including both regular and irregular respirations. In experiments, we compared the performance of the proposed IRPB, Amsterdam Shroud method (AS), Fourier transform-based method (FT), and local intensity feature tracking method (LIFT). The results showed that the average absolute phase shift of IRPB was 3.74 projections and 0.48 projections less than that of FT and LIFT, respectively. AS lost the most breathing cycles in the respiration extraction for the five patient datasets, so we could not compare the average absolute phase shift between IRPB and AS. Based on the peak signal-to-noise ratio (PSNR) of the reconstructed 4D CBCT images, IRPB had 5.08, 1.05, and 2.90 dB larger PSNR than AS, FT, and LIFT, respectively. The average Structure SIMilarity Index (SSIM) of the 4D CBCT image reconstructed by IRPB, AS, and LIFT were 0.87, 0.74, 0.84, and 0.70, respectively. These results demonstrated that IRPB has superior performance to the other standard methods.
KW - Cone beam computed tomography (CBCT)
KW - image registration
KW - projection binning
KW - respiratory signal
UR - http://www.scopus.com/inward/record.url?scp=85029366312&partnerID=8YFLogxK
U2 - 10.1109/TMI.2017.2690260
DO - 10.1109/TMI.2017.2690260
M3 - Article
C2 - 28371774
AN - SCOPUS:85029366312
SN - 0278-0062
VL - 36
SP - 1733
EP - 1745
JO - IEEE Transactions on Medical Imaging
JF - IEEE Transactions on Medical Imaging
IS - 8
M1 - 7891041
ER -