TY - JOUR
T1 - A novel mechanism of G protein-dependent phosphorylation of vasodilator-stimulated phosphoprotein
AU - Profirovic, Jasmina
AU - Gorovoy, Matvey
AU - Niu, Jiaxin
AU - Pavlovic, Sasa
AU - Voyno-Yasenetskaya, Tatyana
PY - 2005/9/23
Y1 - 2005/9/23
N2 - Vasodilator-stimulated phosphoprotein (VASP) is a major substrate of protein kinase A (PKA). Here we described the novel mechanism of VASP phosphorylation via cAMP-independent PKA activation. We showed that in human umbilical vein endothelial cells (HUVECs) α-thrombin induced phosphorylation of VASP. Specific inhibition of Gα13 protein by the RGS domain of a guanine nucleotide exchange factor, p115RhoGEF, inhibited thrombin-dependent phosphorylation of VASP. More importantly, Gα13-induced VASP phosphorylation was dependent on activation of RhoA and mitogen-activated protein kinase kinase kinase, MEKK1, leading to the stimulation of the NF-κ signaling pathway. α-Thrombin-dependent VASP phosphorylation was inhibited by small interfering RNA-mediated knockdown of RhoA, whereas Gα13-dependent VASP phosphorylation was inhibited by a specific RhoA inhibitor botulinum toxin C3 and by a dominant negative mutant of MEKK1. We determined that Gα13-dependent VASP phosphorylation was also inhibited by specific PKA inhibitors, PKI and H-89. In addition, the expression of phosphorylation-deficient IκB and pretreatment with the proteasome inhibitor MG-132 abolished Gα 13- and αthrombin-induced VASP phosphorylation. In summary, we have described a novel pathway of Gα13-induced VASP phosphorylation that involves activation of RhoA and MEKK1, phosphorylation and degradation of IκB, release of PKA catalytic subunit from the complex with IκB and NF-κB, and subsequent phosphorylation of VASP.
AB - Vasodilator-stimulated phosphoprotein (VASP) is a major substrate of protein kinase A (PKA). Here we described the novel mechanism of VASP phosphorylation via cAMP-independent PKA activation. We showed that in human umbilical vein endothelial cells (HUVECs) α-thrombin induced phosphorylation of VASP. Specific inhibition of Gα13 protein by the RGS domain of a guanine nucleotide exchange factor, p115RhoGEF, inhibited thrombin-dependent phosphorylation of VASP. More importantly, Gα13-induced VASP phosphorylation was dependent on activation of RhoA and mitogen-activated protein kinase kinase kinase, MEKK1, leading to the stimulation of the NF-κ signaling pathway. α-Thrombin-dependent VASP phosphorylation was inhibited by small interfering RNA-mediated knockdown of RhoA, whereas Gα13-dependent VASP phosphorylation was inhibited by a specific RhoA inhibitor botulinum toxin C3 and by a dominant negative mutant of MEKK1. We determined that Gα13-dependent VASP phosphorylation was also inhibited by specific PKA inhibitors, PKI and H-89. In addition, the expression of phosphorylation-deficient IκB and pretreatment with the proteasome inhibitor MG-132 abolished Gα 13- and αthrombin-induced VASP phosphorylation. In summary, we have described a novel pathway of Gα13-induced VASP phosphorylation that involves activation of RhoA and MEKK1, phosphorylation and degradation of IκB, release of PKA catalytic subunit from the complex with IκB and NF-κB, and subsequent phosphorylation of VASP.
UR - http://www.scopus.com/inward/record.url?scp=25444531763&partnerID=8YFLogxK
U2 - 10.1074/jbc.M501361200
DO - 10.1074/jbc.M501361200
M3 - Article
C2 - 16046415
AN - SCOPUS:25444531763
SN - 0021-9258
VL - 280
SP - 32866
EP - 32876
JO - Journal of Biological Chemistry
JF - Journal of Biological Chemistry
IS - 38
ER -