Abstract
Histone deacetylase (HDAC) inhibitors perturb the cell cycle and have great potential as anti-cancer agents, but their mechanism of action is not well established. HDACs classically function as repressors of gene expression, tethered to sequence-specific transcription factors. Here we report that HDAC3 is a critical, transcription-independent regulator of mitosis. HDAC3 forms a complex with A-Kinase-Anchoring Proteins AKAP95 and HA95, which are targeted to mitotic chromosomes. Deacetylation of H3 in mitosis requires AKAP95/HA95 and HDAC3 and provides a hypoacetylated H3 tail that is the preferred substrate for Aurora B kinase. Phosphorylation of H3S10 by Aurora B leads to dissociation of HP1 proteins from methylated H3K9 residues on mitotic heterochromatin. This transcription-independent pathway, involving interdependent changes in histone modification and protein association, is required for normal progression through mitosis and is an unexpected target of HDAC inhibitors, a class of drugs currently in clinical trials for treating cancer.
Original language | English |
---|---|
Pages (from-to) | 2566-2579 |
Number of pages | 14 |
Journal | Genes and Development |
Volume | 20 |
Issue number | 18 |
DOIs | |
State | Published - Sep 15 2006 |
Keywords
- AKAP
- Aurora
- HDAC
- Histone code
- Mitosis