A nonstandard empirical likelihood for time series

Daniel J. Nordman, Helle Bunzel, Soumendra N. Lahiri

Research output: Contribution to journalArticlepeer-review

12 Scopus citations

Abstract

Standard blockwise empirical likelihood (BEL) for stationary, weakly dependent time series requires specifying a fixed block length as a tuning parameter for setting confidence regions. This aspect can be difficult and impacts coverage accuracy. As an alternative, this paper proposes a new version of BEL based on a simple, though nonstandard, data-blocking rule which uses a data block of every possible length. Consequently, the method does not involve the usual block selection issues and is also anticipated to exhibit better coverage performance. Its nonstandard blocking scheme, however, induces nonstandard asymptotics and requires a significantly different development compared to standard BEL. We establish the large-sample distribution of log-ratio statistics from the new BEL method for calibrating confidence regions for mean or smooth function parameters of time series. This limit law is not the usual chi-square one, but is distribution-free and can be reproduced through straightforward simulations. Numerical studies indicate that the proposed method generally exhibits better coverage accuracy than standard BEL.

Original languageEnglish
Pages (from-to)3050-3073
Number of pages24
JournalAnnals of Statistics
Volume41
Issue number6
DOIs
StatePublished - Dec 2013

Keywords

  • Brownian motion
  • Confidence regions
  • Stationarity
  • Weak dependence

Fingerprint

Dive into the research topics of 'A nonstandard empirical likelihood for time series'. Together they form a unique fingerprint.

Cite this