TY - JOUR
T1 - A non-convulsant delta-opioid receptor agonist, KNT-127, reduces cortical spreading depression and nitroglycerin-induced allodynia
AU - Bertels, Zachariah
AU - Witkowski, Wiktor D.
AU - Asif, Sarah
AU - Siegersma, Kendra
AU - van Rijn, Richard M.
AU - Pradhan, Amynah A.
N1 - Publisher Copyright:
© 2020 American Headache Society
PY - 2021/1
Y1 - 2021/1
N2 - Objective: The aim of this study was to determine if the non-convulsant delta-opioid receptor (DOR) agonist, KNT-127, could inhibit migraine-associated endpoints. Background: The DOR has been identified as a therapeutic target for migraine. However, the development of delta agonists is limited as some ligands have seizurogenic properties, which may be related to their ability to induce receptor internalization. While both pro- and non-convulsant delta agonists can reduce migraine-associated allodynia, only the proconvulsant agonist, SNC80, has been shown to decrease cortical spreading depression (CSD). It is unclear if the ability of delta agonists to modulate cortical activity is related to the same signaling mechanisms that produce proconvulsant effects. Methods: The effects of the non-convulsant delta agonist, KNT-127, were examined. Repetitive CSD was induced in female C57BL6/J (n = 6/group) mice by continuous application of KCl and the effect of KNT-127/vehicle (Veh) on both local field potentials and optical intrinsic signals was determined. To assess the effect of KNT-127 on established chronic migraine-associated pain, male and female C57BL6/J mice were treated with nitroglycerin (NTG; 10 mg/kg, ip) every other day for 9 days and tested with KNT-127 (5 mg/kg, sc) or Veh on day 10 (n = 6/group). DOR-enhanced green fluorescent protein mice (n = 4/group) were used to confirm the internalization properties of KNT-127 in the trigeminal ganglia, trigeminal nucleus caudalis, and somatosensory cortex. Results: KNT-127 inhibited CSD events (t(10) = 3.570, p = 0.0051). In addition, this delta agonist also reversed established cephalic allodynia in the NTG model of chronic migraine (F(1, 20) = 12.80, p < 0.01). Furthermore, KNT-127 caused limited internalization of DOR in key migraine processing regions. Conclusions: This study shows that the antimigraine effects of DOR agonists can be separated from their proconvulsant effects. This data provides valuable information for the continued development of delta agonists for the treatment of migraine.
AB - Objective: The aim of this study was to determine if the non-convulsant delta-opioid receptor (DOR) agonist, KNT-127, could inhibit migraine-associated endpoints. Background: The DOR has been identified as a therapeutic target for migraine. However, the development of delta agonists is limited as some ligands have seizurogenic properties, which may be related to their ability to induce receptor internalization. While both pro- and non-convulsant delta agonists can reduce migraine-associated allodynia, only the proconvulsant agonist, SNC80, has been shown to decrease cortical spreading depression (CSD). It is unclear if the ability of delta agonists to modulate cortical activity is related to the same signaling mechanisms that produce proconvulsant effects. Methods: The effects of the non-convulsant delta agonist, KNT-127, were examined. Repetitive CSD was induced in female C57BL6/J (n = 6/group) mice by continuous application of KCl and the effect of KNT-127/vehicle (Veh) on both local field potentials and optical intrinsic signals was determined. To assess the effect of KNT-127 on established chronic migraine-associated pain, male and female C57BL6/J mice were treated with nitroglycerin (NTG; 10 mg/kg, ip) every other day for 9 days and tested with KNT-127 (5 mg/kg, sc) or Veh on day 10 (n = 6/group). DOR-enhanced green fluorescent protein mice (n = 4/group) were used to confirm the internalization properties of KNT-127 in the trigeminal ganglia, trigeminal nucleus caudalis, and somatosensory cortex. Results: KNT-127 inhibited CSD events (t(10) = 3.570, p = 0.0051). In addition, this delta agonist also reversed established cephalic allodynia in the NTG model of chronic migraine (F(1, 20) = 12.80, p < 0.01). Furthermore, KNT-127 caused limited internalization of DOR in key migraine processing regions. Conclusions: This study shows that the antimigraine effects of DOR agonists can be separated from their proconvulsant effects. This data provides valuable information for the continued development of delta agonists for the treatment of migraine.
KW - G protein coupled receptor
KW - aura
KW - biased signaling
KW - migraine
KW - mouse
UR - http://www.scopus.com/inward/record.url?scp=85097533746&partnerID=8YFLogxK
U2 - 10.1111/head.14019
DO - 10.1111/head.14019
M3 - Article
C2 - 33326598
AN - SCOPUS:85097533746
SN - 0017-8748
VL - 61
SP - 170
EP - 178
JO - Headache
JF - Headache
IS - 1
ER -