TY - JOUR
T1 - A new mouse model of elastin haploinsufficiency highlights the importance of elastin to vascular development and blood pressure regulation
AU - Brengle, Bridget M.
AU - Lin, Michelle
AU - Roth, Robyn A.
AU - Jones, Kara D.
AU - Wagenseil, Jessica E.
AU - Mecham, Robert P.
AU - Halabi, Carmen M.
N1 - Publisher Copyright:
© 2023 The Author(s)
PY - 2023/3
Y1 - 2023/3
N2 - Supravalvular aortic stenosis (SVAS) is an autosomal dominant disease resulting from elastin (ELN) haploinsufficiency. Individuals with SVAS typically develop a thickened arterial media with an increased number of elastic lamellae and smooth muscle cell (SMC) layers and stenosis superior to the aortic valve. A mouse model of SVAS (Eln+/−) was generated that recapitulates many aspects of the human disease, including increased medial SMC layers and elastic lamellae, large artery stiffness, and hypertension. The vascular changes in these mice were thought to be responsible for the hypertension phenotype. However, a renin gene (Ren) duplication in the original 129/Sv genetic background and carried through numerous strain backcrosses raised the possibility of renin-mediated effects on blood pressure. To exclude excess renin activity as a disease modifier, we utilized the Cre-LoxP system to rederive Eln hemizygous mice on a pure C57BL/6 background (Sox2-Cre;Elnf/f). Here we show that Sox2-Cre;Eln+/f mice, with a single Ren1 gene and normal renin levels, phenocopy the original global knockout line. Characteristic traits include an increased number of elastic lamellae and SMC layers, stiff elastic arteries, and systolic hypertension with widened pulse pressure. Importantly, small resistance arteries of Sox2-Cre;Eln+/f mice exhibit a significant change in endothelial cell function and hypercontractility to angiotensin II, findings that point to pathway-specific alterations in resistance arteries that contribute to the hypertensive phenotype. These data confirm that the cardiovascular changes, particularly systolic hypertension, seen in Eln+/− mice are due to Eln hemizygosity rather than Ren duplication.
AB - Supravalvular aortic stenosis (SVAS) is an autosomal dominant disease resulting from elastin (ELN) haploinsufficiency. Individuals with SVAS typically develop a thickened arterial media with an increased number of elastic lamellae and smooth muscle cell (SMC) layers and stenosis superior to the aortic valve. A mouse model of SVAS (Eln+/−) was generated that recapitulates many aspects of the human disease, including increased medial SMC layers and elastic lamellae, large artery stiffness, and hypertension. The vascular changes in these mice were thought to be responsible for the hypertension phenotype. However, a renin gene (Ren) duplication in the original 129/Sv genetic background and carried through numerous strain backcrosses raised the possibility of renin-mediated effects on blood pressure. To exclude excess renin activity as a disease modifier, we utilized the Cre-LoxP system to rederive Eln hemizygous mice on a pure C57BL/6 background (Sox2-Cre;Elnf/f). Here we show that Sox2-Cre;Eln+/f mice, with a single Ren1 gene and normal renin levels, phenocopy the original global knockout line. Characteristic traits include an increased number of elastic lamellae and SMC layers, stiff elastic arteries, and systolic hypertension with widened pulse pressure. Importantly, small resistance arteries of Sox2-Cre;Eln+/f mice exhibit a significant change in endothelial cell function and hypercontractility to angiotensin II, findings that point to pathway-specific alterations in resistance arteries that contribute to the hypertensive phenotype. These data confirm that the cardiovascular changes, particularly systolic hypertension, seen in Eln+/− mice are due to Eln hemizygosity rather than Ren duplication.
KW - Arterial stiffness
KW - Elastin haploinsufficiency
KW - Endothelial dysfunction
KW - Hypertension
KW - Supravalvular aortic stenosis
UR - http://www.scopus.com/inward/record.url?scp=85148351954&partnerID=8YFLogxK
U2 - 10.1016/j.matbio.2023.02.003
DO - 10.1016/j.matbio.2023.02.003
M3 - Article
C2 - 36773748
AN - SCOPUS:85148351954
SN - 0945-053X
VL - 117
SP - 1
EP - 14
JO - Matrix Biology
JF - Matrix Biology
ER -