Abstract
Background and Study Objectives: A relationship between sleep and seizures is well-described in both humans and rodent animal models; however, the mechanism underlying this relationship is unknown. Using Drosophila melanogaster mutants with seizure phenotypes, we demonstrate that seizure activity can be modified by sleep deprivation. Design: Seizure activity was evaluated in an adult bang-sensitive seizure mutant, stress sensitive B (sesB9ed4), and in an adult temperature sensitive seizure mutant seizure (seits1) under baseline and following 12 h of sleep deprivation. The long-term effect of sleep deprivation on young, immature sesB9ed4 flies was also assessed. Setting: Laboratory. Participants: Drosophila melanogaster. Interventions: Sleep deprivation. Measurements and Results: Sleep deprivation increased seizure susceptibility in adult sesB9ed4/+ and seits1 mutant flies. Sleep deprivation also increased seizure susceptibility when sesB was disrupted using RNAi. The effect of sleep deprivation on seizure activity was reduced when sesB9ed4/+ flies were given the anti-seizure drug, valproic acid. In contrast to adult flies, sleep deprivation during early fly development resulted in chronic seizure susceptibility when sesB9ed4/+ became adults. Conclusions: These findings show that Drosophila is a model organism for investigating the relationship between sleep and seizure activity.
Original language | English |
---|---|
Pages (from-to) | 777-785 |
Number of pages | 9 |
Journal | Sleep |
Volume | 38 |
Issue number | 5 |
DOIs | |
State | Published - May 1 2015 |
Keywords
- Drosophila melanogaster
- Seizure
- Sleep homeostasis