A neomorphic cancer cell-specific role of MAGE-A4 in trans-lesion synthesis

Yanzhe Gao, Elizabeth Mutter-Rottmayer, Alicia M. Greenwalt, Dennis Goldfarb, Feng Yan, Yang Yang, Raquel C. Martinez-Chacin, Kenneth H. Pearce, Satoshi Tateishi, Michael B. Major, Cyrus Vaziri

Research output: Contribution to journalArticlepeer-review

52 Scopus citations


Trans-lesion synthesis (TLS) is an important DNA-damage tolerance mechanism that permits ongoing DNA synthesis in cells harbouring damaged genomes. The E3 ubiquitin ligase RAD18 activates TLS by promoting recruitment of Y-family DNA polymerases to sites of DNA-damage-induced replication fork stalling. Here we identify the cancer/testes antigen melanoma antigen-A4 (MAGE-A4) as a tumour cell-specific RAD18-binding partner and an activator of TLS. MAGE-A4 depletion from MAGE-A4-expressing cancer cells destabilizes RAD18. Conversely, ectopic expression of MAGE-A4 (in cell lines lacking endogenous MAGE-A4) promotes RAD18 stability. DNA-damage-induced mono-ubiquitination of the RAD18 substrate PCNA is attenuated by MAGE-A4 silencing. MAGE-A4-depleted cells fail to resume DNA synthesis normally following ultraviolet irradiation and accumulate γH2AX, thereby recapitulating major hallmarks of TLS deficiency. Taken together, these results demonstrate a mechanism by which reprogramming of ubiquitin signalling in cancer cells can influence DNA damage tolerance and probably contribute to an altered genomic landscape.

Original languageEnglish
Article number12105
JournalNature communications
StatePublished - Jul 5 2016


Dive into the research topics of 'A neomorphic cancer cell-specific role of MAGE-A4 in trans-lesion synthesis'. Together they form a unique fingerprint.

Cite this