TY - JOUR
T1 - A multiple-image-based method to evaluate the performance of deformable image registration in the pelvis
AU - Saleh, Ziad
AU - Thor, Maria
AU - Apte, Aditya P.
AU - Sharp, Gregory
AU - Tang, Xiaoli
AU - Veeraraghavan, Harini
AU - Muren, Ludvig
AU - Deasy, Joseph
N1 - Publisher Copyright:
© 2016 Institute of Physics and Engineering in Medicine.
PY - 2016/7/29
Y1 - 2016/7/29
N2 - Deformable image registration (DIR) is essential for adaptive radiotherapy (RT) for tumor sites subject to motion, changes in tumor volume, as well as changes in patient normal anatomy due to weight loss. Several methods have been published to evaluate DIR-related uncertainties but they are not widely adopted. The aim of this study was, therefore, to evaluate intra-patient DIR for two highly deformable organs - the bladder and the rectum - in prostate cancer RT using a quantitative metric based on multiple image registration, the distance discordance metric (DDM). Voxel-by-voxel DIR uncertainties of the bladder and rectum were evaluated using DDM on weekly CT scans of 38 subjects previously treated with RT for prostate cancer (six scans/subject). The DDM was obtained from group-wise B-spline registration of each patient's collection of repeat CT scans. For each structure, registration uncertainties were derived from DDM-related metrics. In addition, five other quantitative measures, including inverse consistency error (ICE), transitivity error (TE), Dice similarity (DSC) and volume ratios between corresponding structures from pre- and post- registered images were computed and compared with the DDM. The DDM varied across subjects and structures; DDMmean of the bladder ranged from 2 to 13 mm and from 1 to 11 mm for the rectum. There was a high correlation between DDMmean of the bladder and the rectum (Pearson's correlation coefficient, R p = 0.62). The correlation between DDMmean and the volume ratios post-DIR was stronger (R p = 0.51; 0.68) than the correlation with the TE (bladder: R p = 0.46; rectum: R p = 0.47), or the ICE (bladder: R p = 0.34; rectum: R p = 0.37). There was a negative correlation between DSC and DDMmean of both the bladder (R p = -0.23) and the rectum (R p = -0.63). The DDM uncertainty metric indicated considerable DIR variability across subjects and structures. Our results show a stronger correlation with volume ratios and with the DSC using DDM compared to using ICE and TE. The DDM has the potential to quantitatively identify regions of large DIR uncertainties and consequently identify anatomical/scan outliers. The DDM can, thus, be applied to improve the adaptive RT process for tumor sites subject to motion.
AB - Deformable image registration (DIR) is essential for adaptive radiotherapy (RT) for tumor sites subject to motion, changes in tumor volume, as well as changes in patient normal anatomy due to weight loss. Several methods have been published to evaluate DIR-related uncertainties but they are not widely adopted. The aim of this study was, therefore, to evaluate intra-patient DIR for two highly deformable organs - the bladder and the rectum - in prostate cancer RT using a quantitative metric based on multiple image registration, the distance discordance metric (DDM). Voxel-by-voxel DIR uncertainties of the bladder and rectum were evaluated using DDM on weekly CT scans of 38 subjects previously treated with RT for prostate cancer (six scans/subject). The DDM was obtained from group-wise B-spline registration of each patient's collection of repeat CT scans. For each structure, registration uncertainties were derived from DDM-related metrics. In addition, five other quantitative measures, including inverse consistency error (ICE), transitivity error (TE), Dice similarity (DSC) and volume ratios between corresponding structures from pre- and post- registered images were computed and compared with the DDM. The DDM varied across subjects and structures; DDMmean of the bladder ranged from 2 to 13 mm and from 1 to 11 mm for the rectum. There was a high correlation between DDMmean of the bladder and the rectum (Pearson's correlation coefficient, R p = 0.62). The correlation between DDMmean and the volume ratios post-DIR was stronger (R p = 0.51; 0.68) than the correlation with the TE (bladder: R p = 0.46; rectum: R p = 0.47), or the ICE (bladder: R p = 0.34; rectum: R p = 0.37). There was a negative correlation between DSC and DDMmean of both the bladder (R p = -0.23) and the rectum (R p = -0.63). The DDM uncertainty metric indicated considerable DIR variability across subjects and structures. Our results show a stronger correlation with volume ratios and with the DSC using DDM compared to using ICE and TE. The DDM has the potential to quantitatively identify regions of large DIR uncertainties and consequently identify anatomical/scan outliers. The DDM can, thus, be applied to improve the adaptive RT process for tumor sites subject to motion.
KW - adaptive radiotherapy
KW - deformable image registration
KW - distance discordance metric (DDM)
KW - uncertainties
UR - http://www.scopus.com/inward/record.url?scp=84983803113&partnerID=8YFLogxK
U2 - 10.1088/0031-9155/61/16/6172
DO - 10.1088/0031-9155/61/16/6172
M3 - Article
C2 - 27469495
AN - SCOPUS:84983803113
SN - 0031-9155
VL - 61
SP - 6172
EP - 6180
JO - Physics in medicine and biology
JF - Physics in medicine and biology
IS - 16
ER -