TY - JOUR
T1 - A multidisciplinary Prematurity Research Cohort Study
AU - Stout, Molly J.
AU - Chubiz, Jessica
AU - Raghuraman, Nandini
AU - Zhao, Peinan
AU - Tuuli, Methodius G.
AU - Wang, Lihong V.
AU - Cahill, Alison G.
AU - Cuculich, Phillip S.
AU - Wang, Yong
AU - Jungheim, Emily S.
AU - Herzog, Erik D.
AU - Fay, Justin
AU - Schwartz, Alan L.
AU - Macones, George A.
AU - England, Sarah K.
N1 - Publisher Copyright:
© 2022 Stout et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
PY - 2022/8
Y1 - 2022/8
N2 - Background Worldwide, 10% of babies are born preterm, defined as a live birth before 37 weeks of gestation. Preterm birth is the leading cause of neonatal death, and survivors face lifelong risks of adverse outcomes. New approaches with large sample sizes are needed to identify strategies to predict and prevent preterm birth. The primary aims of the Washington University Prematurity Research Cohort Study were to conduct three prospective projects addressing possible causes of preterm birth and provide data and samples for future research. Study design Pregnant patients were recruited into the cohort between January 2017 and January 2020. Consenting patients were enrolled into the study before 20 weeks' gestation and followed through delivery. Participants completed demographic and lifestyle surveys; provided maternal blood, placenta samples, and cord blood; and participated in up to three projects focused on underlying physiology of preterm birth: cervical imaging (Project 1), circadian rhythms (Project 2), and uterine magnetic resonance imaging and electromyometrial imaging (Project 3). Results A total of 1260 participants were enrolled and delivered during the study period. Of the participants, 706 (56%) were Black/African American, 494 (39%) were nulliparous, and 185 (15%) had a previous preterm birth. Of the 1260 participants, 1220 (97%) delivered a live infant. Of the 1220 with a live birth, 163 (14.1%) had preterm birth, of which 74 (6.1%) were spontaneous preterm birth. Of the 1220 participants with a live birth, 841 participated in cervical imaging, 1047 contributed data and/or samples on circadian rhythms, and 39 underwent uterine magnetic resonance imaging. Of the 39, 25 underwent electromyometrial imaging. Conclusion We demonstrate feasibility of recruiting and retaining a diverse cohort in a complex prospective, longitudinal study throughout pregnancy. The extensive clinical, imaging, survey, and biologic data obtained will be used to explore cervical, uterine, and endocrine physiology of preterm birth and can be used to develop novel approaches to predict and prevent preterm birth.
AB - Background Worldwide, 10% of babies are born preterm, defined as a live birth before 37 weeks of gestation. Preterm birth is the leading cause of neonatal death, and survivors face lifelong risks of adverse outcomes. New approaches with large sample sizes are needed to identify strategies to predict and prevent preterm birth. The primary aims of the Washington University Prematurity Research Cohort Study were to conduct three prospective projects addressing possible causes of preterm birth and provide data and samples for future research. Study design Pregnant patients were recruited into the cohort between January 2017 and January 2020. Consenting patients were enrolled into the study before 20 weeks' gestation and followed through delivery. Participants completed demographic and lifestyle surveys; provided maternal blood, placenta samples, and cord blood; and participated in up to three projects focused on underlying physiology of preterm birth: cervical imaging (Project 1), circadian rhythms (Project 2), and uterine magnetic resonance imaging and electromyometrial imaging (Project 3). Results A total of 1260 participants were enrolled and delivered during the study period. Of the participants, 706 (56%) were Black/African American, 494 (39%) were nulliparous, and 185 (15%) had a previous preterm birth. Of the 1260 participants, 1220 (97%) delivered a live infant. Of the 1220 with a live birth, 163 (14.1%) had preterm birth, of which 74 (6.1%) were spontaneous preterm birth. Of the 1220 participants with a live birth, 841 participated in cervical imaging, 1047 contributed data and/or samples on circadian rhythms, and 39 underwent uterine magnetic resonance imaging. Of the 39, 25 underwent electromyometrial imaging. Conclusion We demonstrate feasibility of recruiting and retaining a diverse cohort in a complex prospective, longitudinal study throughout pregnancy. The extensive clinical, imaging, survey, and biologic data obtained will be used to explore cervical, uterine, and endocrine physiology of preterm birth and can be used to develop novel approaches to predict and prevent preterm birth.
UR - http://www.scopus.com/inward/record.url?scp=85136590561&partnerID=8YFLogxK
U2 - 10.1371/journal.pone.0272155
DO - 10.1371/journal.pone.0272155
M3 - Article
C2 - 36006907
AN - SCOPUS:85136590561
SN - 1932-6203
VL - 17
JO - PloS one
JF - PloS one
IS - 8 August
M1 - e0272155
ER -