TY - JOUR
T1 - A multicenter evaluation of heterogeneity in cellular therapy processing laboratory procedure times to assess workload capacity
AU - Thibodeaux, Suzanne R.
AU - McKenna, David H.
AU - Szczepiorkowski, Zbigniew M.
AU - Fontaine, Magali J.
AU - Kelley, Linda
AU - Reems, Jo Anna
AU - Young, Pampee P.
N1 - Publisher Copyright:
© 2020 AABB
PY - 2020/8/1
Y1 - 2020/8/1
N2 - BACKGROUND: Growth in size and complexity of clinical hematopoietic progenitor cell (HPC) transplant programs necessitates parallel increases in cellular therapy laboratory (CTL) workload. Typically individually developed, HPC product processing is labor and time intensive. Variation in procedure type and numbers across CTLs complicates direct comparisons, and benchmark data are not readily available. STUDY DESIGN AND METHODS: Studies were undertaken at seven CTLs. Transplant volume and staff numbers were determined. Staff recorded time performing tasks broken down into steps: paperwork, product acceptance, transport/infusion, processing, and cryopreservation. Times were added to obtain total times for 15 common CTL procedures. RESULTS: Annual transplant volume ranged from 53.4 to 463.2, with products processed by a range of 2 to 10 dedicated CTL staff. Paperwork time constituted 23.7% to 62.3% total time; product processing time accounted for 1.8 (for National Marrow Donor Program product receipt) to 62.6% (for red blood cell reduction of allogeneic HPC products from bone marrow) of total processing time. Mean time for 15 procedures ranged from 1.27 to 8.28 hours (standard deviation range, 0.35-2.71 hr). Mean time for products from bone marrow versus peripheral blood was 6.6 ± 2.0 versus 5.5 ± 1.1 hours (p = 0.02). Cryopreservation (6.5 ± 1.6 vs. 4.4 ± 0.85 hr; p < 0.01) and manipulation (6.4 ± 1.5 vs. 4.4 ± 0.85 hr; p < 0.01) added time. CONCLUSION: CTL procedures are time intensive, with wide intra- and inter-CTL variation. Paperwork accounted for substantial portion of total time across procedures. Bone marrow source, cryopreservation, and manipulation contributed to longer times. These findings provide concrete data on which to build regarding CTL workload capacity.
AB - BACKGROUND: Growth in size and complexity of clinical hematopoietic progenitor cell (HPC) transplant programs necessitates parallel increases in cellular therapy laboratory (CTL) workload. Typically individually developed, HPC product processing is labor and time intensive. Variation in procedure type and numbers across CTLs complicates direct comparisons, and benchmark data are not readily available. STUDY DESIGN AND METHODS: Studies were undertaken at seven CTLs. Transplant volume and staff numbers were determined. Staff recorded time performing tasks broken down into steps: paperwork, product acceptance, transport/infusion, processing, and cryopreservation. Times were added to obtain total times for 15 common CTL procedures. RESULTS: Annual transplant volume ranged from 53.4 to 463.2, with products processed by a range of 2 to 10 dedicated CTL staff. Paperwork time constituted 23.7% to 62.3% total time; product processing time accounted for 1.8 (for National Marrow Donor Program product receipt) to 62.6% (for red blood cell reduction of allogeneic HPC products from bone marrow) of total processing time. Mean time for 15 procedures ranged from 1.27 to 8.28 hours (standard deviation range, 0.35-2.71 hr). Mean time for products from bone marrow versus peripheral blood was 6.6 ± 2.0 versus 5.5 ± 1.1 hours (p = 0.02). Cryopreservation (6.5 ± 1.6 vs. 4.4 ± 0.85 hr; p < 0.01) and manipulation (6.4 ± 1.5 vs. 4.4 ± 0.85 hr; p < 0.01) added time. CONCLUSION: CTL procedures are time intensive, with wide intra- and inter-CTL variation. Paperwork accounted for substantial portion of total time across procedures. Bone marrow source, cryopreservation, and manipulation contributed to longer times. These findings provide concrete data on which to build regarding CTL workload capacity.
UR - http://www.scopus.com/inward/record.url?scp=85087719045&partnerID=8YFLogxK
U2 - 10.1111/trf.15899
DO - 10.1111/trf.15899
M3 - Article
C2 - 32654200
AN - SCOPUS:85087719045
SN - 0041-1132
VL - 60
SP - 1811
EP - 1820
JO - Transfusion
JF - Transfusion
IS - 8
ER -