A missense LAMB2 mutation causes congenital nephrotic syndrome by impairing laminin secretion

Research output: Contribution to journalArticlepeer-review

39 Scopus citations

Abstract

Laminin β2 is a component of laminin-521, which is an important constituent of the glomerular basement membrane (GBM). Null mutations in laminin β2 (LAMB2) cause Pierson syndrome, a severe congenital nephrotic syndrome with ocular and neurologic defects. In contrast, patients with LAMB2 missense mutations, such as R246Q, can have less severe extrarenal defects but still exhibit congenital nephrotic syndrome. To investigate how such missense mutations in LAMB2 cause proteinuria, we generated three transgenic lines of mice in which R246Q-mutant rat laminin β2 replaced the wild-type mouse laminin β2 in the GBM. These transgenic mice developed much less severe proteinuria than their nontransgenic Lamb2-deficient littermates; the level of proteinuria correlated inversely with R246Q-LAMB2 expression. At the onset of proteinuria, expression and localization of proteins associated with the slit diaphragm and foot processes were normal, and there were no obvious ultrastructural abnormalities. Low transgene expressors developed heavy proteinuria, foot process effacement, GBM thickening, and renal failure by 3 months, but high expressors developed only mild proteinuria by 9 months. In vitro studies demonstrated that the R246Q mutation results in impaired secretion of laminin. Taken together, these results suggest that the R246Q mutation causes nephrotic syndrome by impairing secretion of laminin-521 from podocytes into the GBM; however, increased expression of the mutant protein is able to overcome this secretion defect and improve glomerular permselectivity.

Original languageEnglish
Pages (from-to)849-858
Number of pages10
JournalJournal of the American Society of Nephrology
Volume22
Issue number5
DOIs
StatePublished - May 2011

Fingerprint Dive into the research topics of 'A missense LAMB2 mutation causes congenital nephrotic syndrome by impairing laminin secretion'. Together they form a unique fingerprint.

Cite this