A machine learning approach to improve the diagnosis of diabetic retinopathy using fundus image

Sinan Onal, Akintan Adeshina, Humeyra Dabil-Karacal

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Diabetic retinopathy is the most common diabetic eye disease. There are more than 29 million people with diabetes mellitus (DM) as of 2012 in the U.S and approximately 40% of the patients with DM have at least mild diabetic retinopathy. Diabetic retinopathy is diagnosed through comprehensive eye exams where blood vessels are examined on fundus images. However, assessment of blood vessels on colored fundus images is a very time consuming and subjective process. In this research, we present an automated blood vessel segmentation algorithm to facilitate the evaluation of diabetic retinopathy through assessment of blood vessel abnormalities. The blood vessels are extracted using random forest based classification model combined with wavelet based features and local binary pattern (LBP) based texture information. Discriminant analysis is modified and adopted for selection of the significant features to train the proposed classification model. Results demonstrate that the proposed method achieves higher blood vessel segmentation accuracy compared to other supervised based methods. The main advantage of the proposed model is to provide robust and computationally efficient classification of the diabetic retinopathy.

Original languageEnglish
Title of host publicationIIE Annual Conference and Expo 2015
PublisherInstitute of Industrial Engineers
Pages447-455
Number of pages9
ISBN (Electronic)9780983762447
StatePublished - Jan 1 2015
EventIIE Annual Conference and Expo 2015 - Nashville, United States
Duration: May 30 2015Jun 2 2015

Publication series

NameIIE Annual Conference and Expo 2015

Conference

ConferenceIIE Annual Conference and Expo 2015
CountryUnited States
CityNashville
Period05/30/1506/2/15

Keywords

  • Blood vessel segmentation
  • Diabetic retinopathy
  • Feature selection
  • Fundus image
  • Random forest

Fingerprint Dive into the research topics of 'A machine learning approach to improve the diagnosis of diabetic retinopathy using fundus image'. Together they form a unique fingerprint.

  • Cite this

    Onal, S., Adeshina, A., & Dabil-Karacal, H. (2015). A machine learning approach to improve the diagnosis of diabetic retinopathy using fundus image. In IIE Annual Conference and Expo 2015 (pp. 447-455). (IIE Annual Conference and Expo 2015). Institute of Industrial Engineers.