TY - JOUR
T1 - A machine learning algorithm improves the diagnostic accuracy of the histologic component of antibody mediated rejection (AMR-H) in cardiac transplant endomyocardial biopsies
AU - Glass, Matthew
AU - Ji, Zhicheng
AU - Davis, Richard
AU - Pavlisko, Elizabeth N.
AU - DiBernardo, Louis
AU - Carney, John
AU - Fishbein, Gregory
AU - Luthringer, Daniel
AU - Miller, Dylan
AU - Mitchell, Richard
AU - Larsen, Brandon
AU - Butt, Yasmeen
AU - Bois, Melanie
AU - Maleszewski, Joseph
AU - Halushka, Marc
AU - Seidman, Michael
AU - Lin, Chieh Yu
AU - Buja, Maximilian
AU - Stone, James
AU - Dov, David
AU - Carin, Lawrence
AU - Glass, Carolyn
N1 - Publisher Copyright:
© 2024 Elsevier Inc.
PY - 2024/9/1
Y1 - 2024/9/1
N2 - Background: Pathologic antibody mediated rejection (pAMR) remains a major driver of graft failure in cardiac transplant patients. The endomyocardial biopsy remains the primary diagnostic tool but presents with challenges, particularly in distinguishing the histologic component (pAMR-H) defined by 1) intravascular macrophage accumulation in capillaries and 2) activated endothelial cells that expand the cytoplasm to narrow or occlude the vascular lumen. Frequently, pAMR-H is difficult to distinguish from acute cellular rejection (ACR) and healing injury. With the advent of digital slide scanning and advances in machine deep learning, artificial intelligence technology is widely under investigation in the areas of oncologic pathology, but in its infancy in transplant pathology. For the first time, we determined if a machine learning algorithm could distinguish pAMR-H from normal myocardium, healing injury and ACR. Materials and Methods: A total of 4,212 annotations (1,053 regions of normal, 1,053 pAMR-H, 1,053 healing injury and 1,053 ACR) were completed from 300 hematoxylin and eosin slides scanned using a Leica Aperio GT450 digital whole slide scanner at 40X magnification. All regions of pAMR-H were annotated from patients confirmed with a previous diagnosis of pAMR2 (>50% positive C4d immunofluorescence and/or >10% CD68 positive intravascular macrophages). Annotations were imported into a Python 3.7 development environment using the OpenSlide™ package and a convolutional neural network approach utilizing transfer learning was performed. Results: The machine learning algorithm showed 98% overall validation accuracy and pAMR-H was correctly distinguished from specific categories with the following accuracies: normal myocardium (99.2%), healing injury (99.5%) and ACR (99.5%). Conclusion: Our novel deep learning algorithm can reach acceptable, and possibly surpass, performance of current diagnostic standards of identifying pAMR-H. Such a tool may serve as an adjunct diagnostic aid for improving the pathologist's accuracy and reproducibility, especially in difficult cases with high inter-observer variability. This is one of the first studies that provides evidence that an artificial intelligence machine learning algorithm can be trained and validated to diagnose pAMR-H in cardiac transplant patients. Ongoing studies include multi-institutional verification testing to ensure generalizability.
AB - Background: Pathologic antibody mediated rejection (pAMR) remains a major driver of graft failure in cardiac transplant patients. The endomyocardial biopsy remains the primary diagnostic tool but presents with challenges, particularly in distinguishing the histologic component (pAMR-H) defined by 1) intravascular macrophage accumulation in capillaries and 2) activated endothelial cells that expand the cytoplasm to narrow or occlude the vascular lumen. Frequently, pAMR-H is difficult to distinguish from acute cellular rejection (ACR) and healing injury. With the advent of digital slide scanning and advances in machine deep learning, artificial intelligence technology is widely under investigation in the areas of oncologic pathology, but in its infancy in transplant pathology. For the first time, we determined if a machine learning algorithm could distinguish pAMR-H from normal myocardium, healing injury and ACR. Materials and Methods: A total of 4,212 annotations (1,053 regions of normal, 1,053 pAMR-H, 1,053 healing injury and 1,053 ACR) were completed from 300 hematoxylin and eosin slides scanned using a Leica Aperio GT450 digital whole slide scanner at 40X magnification. All regions of pAMR-H were annotated from patients confirmed with a previous diagnosis of pAMR2 (>50% positive C4d immunofluorescence and/or >10% CD68 positive intravascular macrophages). Annotations were imported into a Python 3.7 development environment using the OpenSlide™ package and a convolutional neural network approach utilizing transfer learning was performed. Results: The machine learning algorithm showed 98% overall validation accuracy and pAMR-H was correctly distinguished from specific categories with the following accuracies: normal myocardium (99.2%), healing injury (99.5%) and ACR (99.5%). Conclusion: Our novel deep learning algorithm can reach acceptable, and possibly surpass, performance of current diagnostic standards of identifying pAMR-H. Such a tool may serve as an adjunct diagnostic aid for improving the pathologist's accuracy and reproducibility, especially in difficult cases with high inter-observer variability. This is one of the first studies that provides evidence that an artificial intelligence machine learning algorithm can be trained and validated to diagnose pAMR-H in cardiac transplant patients. Ongoing studies include multi-institutional verification testing to ensure generalizability.
KW - Antibody mediated rejection
KW - Artificial intelligence
KW - Cardiac transplantation
KW - Machine learning
UR - http://www.scopus.com/inward/record.url?scp=85196935325&partnerID=8YFLogxK
U2 - 10.1016/j.carpath.2024.107646
DO - 10.1016/j.carpath.2024.107646
M3 - Article
C2 - 38677634
AN - SCOPUS:85196935325
SN - 1054-8807
VL - 72
JO - Cardiovascular Pathology
JF - Cardiovascular Pathology
M1 - 107646
ER -