Abstract
Dual-function radar-communication (DFRC) system is flexible to be applied in a variety of scenarios. However, it is challenging to implement a low-cost low-complexity DFRC system due to the dynamic cooperation between radar sensing and communication tasks. In this paper, we propose to implement a low-complexity multiple input multiple output DFRC (MIMO-DFRC) system relying on the generalized spatial modulation (GSM) and the low-resolution sampling. To deal with the induced quantization distortion and dynamic antenna allocation, we formulate the radar sensing problem as an atomic norm-based convex problem, which can be solved by off-the-shelf solvers. Simulation results demonstrate that the proposed MIMO-DFRC system can achieve delay and azimuth estimation with accuracy as low as about 10% of the resolution grids while employing 1-bit sampling.
Original language | English |
---|---|
Pages (from-to) | 8223-8227 |
Number of pages | 5 |
Journal | ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings |
Volume | 2021-June |
DOIs | |
State | Published - 2021 |
Event | 2021 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2021 - Virtual, Toronto, Canada Duration: Jun 6 2021 → Jun 11 2021 |
Keywords
- 1-bit sampling
- Dual function radar communication
- MIMO radar