TY - JOUR
T1 - A high-fat diet alters genome-wide DNA methylation and gene expression in SM/J mice 06 Biological Sciences 0604 Genetics
AU - Keleher, Madeline Rose
AU - Zaidi, Rabab
AU - Hicks, Lauren
AU - Shah, Shyam
AU - Xing, Xiaoyun
AU - Li, Daofeng
AU - Wang, Ting
AU - Cheverud, James M.
N1 - Funding Information:
The experimental work was funded in part by the American Heart Association under award number 16PRE26420105. The RNA sequencing was performed by GTAC, which is supported by grants from the NCI Cancer Center (P30 CA91842) and the National Center for Research Resources (UL1TR000448). The metabolomics was performed by the Core Laboratory for Clinical Studies and the Diabetes Models Phenotyping Core, which are supported by a grant from Washington University DRC (P30 DK020579). This publication is solely the responsibility of the authors and does not necessarily represent the official view of NCRR or NIH. The funding bodies had no role in: the design of the study; the collection, analysis, or interpretation of the data; or in writing the manuscript.
Publisher Copyright:
© 2018 The Author(s).
PY - 2018/12/7
Y1 - 2018/12/7
N2 - Background: While the genetics of obesity has been well defined, the epigenetics of obesity is poorly understood. Here, we used a genome-wide approach to identify genes with differences in both DNA methylation and expression associated with a high-fat diet in mice. Results: We weaned genetically identical Small (SM/J) mice onto a high-fat or low-fat diet and measured their weights weekly, tested their glucose and insulin tolerance, assessed serum biomarkers, and weighed their organs at necropsy. We measured liver gene expression with RNA-seq (using 21 total libraries, each pooled with 2 mice of the same sex and diet) and DNA methylation with MRE-seq and MeDIP-seq (using 8 total libraries, each pooled with 4 mice of the same sex and diet). There were 4356 genes with expression differences associated with diet, with 184 genes exhibiting a sex-by-diet interaction. Dietary fat dysregulated several pathways, including those involved in cytokine-cytokine receptor interaction, chemokine signaling, and oxidative phosphorylation. Over 7000 genes had differentially methylated regions associated with diet, which occurred in regulatory regions more often than expected by chance. Only 5-10% of differentially methylated regions occurred in differentially expressed genes, however this was more often than expected by chance (p = 2.2 × 10 - 8 ). Conclusions: Discovering the gene expression and methylation changes associated with a high-fat diet can help to identify new targets for epigenetic therapies and inform about the physiological changes in obesity. Here, we identified numerous genes with altered expression and methylation that are promising candidates for further study.
AB - Background: While the genetics of obesity has been well defined, the epigenetics of obesity is poorly understood. Here, we used a genome-wide approach to identify genes with differences in both DNA methylation and expression associated with a high-fat diet in mice. Results: We weaned genetically identical Small (SM/J) mice onto a high-fat or low-fat diet and measured their weights weekly, tested their glucose and insulin tolerance, assessed serum biomarkers, and weighed their organs at necropsy. We measured liver gene expression with RNA-seq (using 21 total libraries, each pooled with 2 mice of the same sex and diet) and DNA methylation with MRE-seq and MeDIP-seq (using 8 total libraries, each pooled with 4 mice of the same sex and diet). There were 4356 genes with expression differences associated with diet, with 184 genes exhibiting a sex-by-diet interaction. Dietary fat dysregulated several pathways, including those involved in cytokine-cytokine receptor interaction, chemokine signaling, and oxidative phosphorylation. Over 7000 genes had differentially methylated regions associated with diet, which occurred in regulatory regions more often than expected by chance. Only 5-10% of differentially methylated regions occurred in differentially expressed genes, however this was more often than expected by chance (p = 2.2 × 10 - 8 ). Conclusions: Discovering the gene expression and methylation changes associated with a high-fat diet can help to identify new targets for epigenetic therapies and inform about the physiological changes in obesity. Here, we identified numerous genes with altered expression and methylation that are promising candidates for further study.
KW - Diet
KW - Epigenetics
KW - Gene expression
KW - Methylation
KW - Mice
KW - Obesity
KW - RNA-seq
UR - http://www.scopus.com/inward/record.url?scp=85058105362&partnerID=8YFLogxK
U2 - 10.1186/s12864-018-5327-0
DO - 10.1186/s12864-018-5327-0
M3 - Article
C2 - 30526554
AN - SCOPUS:85058105362
SN - 1471-2164
VL - 19
JO - BMC genomics
JF - BMC genomics
IS - 1
M1 - 888
ER -