A high-density narrow-field inhibitory retinal interneuron with direct coupling to Müller glia

William N. Grimes, Didem Göz Aytürk, Mrinalini Hoon, Takeshi Yoshimatsu, Clare Gamlin, Daniel Carrera, Amurta Nath, Francisco M. Nadal-Nicolás, Richard M. Ahlquist, Adit Sabnis, David M. Berson, Jeffrey S. Diamond, Rachel O. Wong, Connie Cepko, Fred Rieke

Research output: Contribution to journalArticlepeer-review

7 Scopus citations

Abstract

Amacrine cells are interneurons composing the most diverse cell class in the mammalian retina. They help encode visual features such as edges or directed motion by mediating excitatory and inhibitory interactions between input (i.e. bipolar) and output (i.e. ganglion) neurons in the inner plexiform layer (IPL). Like other brain regions, the retina also contains glial cells that contribute to neurotransmitter uptake, metabolic regulation and neurovascular control. Here, we report that in mouse retina (of either sex), an abundant, though previously unstudied inhibitory amacrine cell is coupled directly to Müller glia. Electron microscopic reconstructions of this amacrine type revealed chemical synapses with known retinal cell types and extensive associations with Müller glia, the processes of which often completely ensheathe the neurites of this amacrine cell. Microinjecting small tracer molecules into the somas of these amacrine cells led to selective labelling of nearby Müller glia, leading us to suggest the name “Müller glia-coupled amacrine cell,” or MAC. Our data also indicate that MACs release glycine at conventional chemical synapses, and viral retrograde transsynaptic tracing from the dorsal lateral geniculate nucleus (dLGN) showed selective connections between MACs and a subpopulation of RGC types. Visually-evoked responses revealed a strong preference for light increments; these “ON” responses were primarily mediated by excitatory chemical synaptic input and direct electrical coupling with other cells. This initial characterization of the MAC provides the first evidence for neuron-glia coupling in the mammalian retina and identifies the MAC as a potential link between inhibitory processing and glial function.

Original languageEnglish
JournalJournal of Neuroscience
Volume41
Issue number28
DOIs
StatePublished - Jul 14 2021

Fingerprint

Dive into the research topics of 'A high-density narrow-field inhibitory retinal interneuron with direct coupling to Müller glia'. Together they form a unique fingerprint.

Cite this