A GH89 human α-N-acetylglucosaminidase (hNAGLU) homologue from gut microbe Bacteroides thetaiotaomicron capable of hydrolyzing heparosan oligosaccharides

Xiaohong Yang, Xiaoxiao Yang, Hai Yu, Lan Na, Tamashree Ghosh, John B. McArthur, Tsui Fen Chou, Patricia Dickson, Xi Chen

Research output: Contribution to journalArticlepeer-review

Abstract

Carbohydrate-Active enZYme (CAZY) GH89 family enzymes catalyze the cleavage of terminal α-N-acetylglucosamine from glycans and glycoconjugates. Although structurally and mechanistically similar to the human lysosomal α-N-acetylglucosaminidase (hNAGLU) in GH89 which is involved in the degradation of heparan sulfate in the lysosome, the reported bacterial GH89 enzymes characterized so far have no or low activity toward α-N-acetylglucosamine-terminated heparosan oligosaccharides, the preferred substrates of hNAGLU. We cloned and expressed several soluble and active recombinant bacterial GH89 enzymes in Escherichia coli. Among these enzymes, a truncated recombinant α-N-acetylglucosaminidase from gut symbiotic bacterium Bacteroides thetaiotaomicron ∆22Bt3590 was found to catalyze the cleavage of the terminal α1–4-linked N-acetylglucosamine (GlcNAc) from a heparosan disaccharide with high efficiency. Heparosan oligosaccharides with lengths up to decasaccharide were also suitable substrates. This bacterial α-N-acetylglucosaminidase could be a useful catalyst for heparan sulfate analysis.

Original languageEnglish
Article number94
JournalAMB Express
Volume11
Issue number1
DOIs
StatePublished - Dec 2021

Keywords

  • Bacterial glycoside hydrolases
  • Bacteroides thetaiotaomicron
  • Heparosan oligosaccharides
  • NAGLU
  • α-N-Acetylglucosaminidase

Fingerprint

Dive into the research topics of 'A GH89 human α-N-acetylglucosaminidase (hNAGLU) homologue from gut microbe Bacteroides thetaiotaomicron capable of hydrolyzing heparosan oligosaccharides'. Together they form a unique fingerprint.

Cite this