A genome-wide algal mutant library and functional screen identifies genes required for eukaryotic photosynthesis

Xiaobo Li, Weronika Patena, Friedrich Fauser, Robert E. Jinkerson, Shai Saroussi, Moritz T. Meyer, Nina Ivanova, Jacob M. Robertson, Rebecca Yue, Ru Zhang, Josep Vilarrasa-Blasi, Tyler M. Wittkopp, Silvia Ramundo, Sean R. Blum, Audrey Goh, Matthew Laudon, Tharan Srikumar, Paul A. Lefebvre, Arthur R. Grossman, Martin C. Jonikas

Research output: Contribution to journalLetterpeer-review

184 Scopus citations

Abstract

Photosynthetic organisms provide food and energy for nearly all life on Earth, yet half of their protein-coding genes remain uncharacterized1,2. Characterization of these genes could be greatly accelerated by new genetic resources for unicellular organisms. Here we generated a genome-wide, indexed library of mapped insertion mutants for the unicellular alga Chlamydomonas reinhardtii. The 62,389 mutants in the library, covering 83% of nuclear protein-coding genes, are available to the community. Each mutant contains unique DNA barcodes, allowing the collection to be screened as a pool. We performed a genome-wide survey of genes required for photosynthesis, which identified 303 candidate genes. Characterization of one of these genes, the conserved predicted phosphatase-encoding gene CPL3, showed that it is important for accumulation of multiple photosynthetic protein complexes. Notably, 21 of the 43 higher-confidence genes are novel, opening new opportunities for advances in understanding of this biogeochemically fundamental process. This library will accelerate the characterization of thousands of genes in algae, plants, and animals.

Original languageEnglish
Pages (from-to)627-635
Number of pages9
JournalNature Genetics
Volume51
Issue number4
DOIs
StatePublished - Apr 1 2019

Fingerprint

Dive into the research topics of 'A genome-wide algal mutant library and functional screen identifies genes required for eukaryotic photosynthesis'. Together they form a unique fingerprint.

Cite this