TY - JOUR
T1 - A genetic polymorphism in the Pannexin1 gene predisposes for the development of endothelial dysfunction with increasing BMI
AU - Molica, Filippo
AU - Quercioli, Alessandra
AU - Montecucco, Fabrizio
AU - Schindler, Thomas H.
AU - Kwak, Brenda R.
AU - Morel, Sandrine
N1 - Publisher Copyright:
© 2020 by the authors. Licensee MDPI, Basel, Switzerland.
PY - 2020/2
Y1 - 2020/2
N2 - Endothelial dysfunction worsens when body mass index (BMI) increases. Pannexin1 (Panx1) ATP release channels regulate endothelial function and lipid homeostasis in mice. We investigated whether the Panx1-400A>C single nucleotide polymorphism (SNP), encoding for a gain-of-function channel, associates with endothelial dysfunction in non-obese and obese individuals. Myocardial blood flow (MBF) was measured by 13 N-ammonia positron emission/computed tomography at rest, during cold pressor test (CPT) or dipyridamole-induced hyperemia. Myocardial flow reserve (MFR) and endothelial function were compared in 43 non-obese (BMI < 30 kg/m2) vs. 29 obese (BMI ≥ 30 kg/m2) participants and genotyping for the Panx1-400A>C SNP was performed. Groups comprised subjects homozygous for the C allele (n = 40) vs. subjects with at least one A allele (n = 32). MBF (during CPT or hyperemia), MFR and endothelial function correlated negatively with BMI in the full cohort. BMI correlated negatively with MFR and endothelial function in non-obese Panx1-400C subjects, but not in Panx1-400A individuals nor in obese groups. BMI correlated positively with serum triglycerides, insulin or HOMA. MFR correlated negatively with these factors in non-obese Panx1-400C but not in Panx1-400A individuals. Here, we demonstrated that Panx1-400C SNP predisposes to BMI-dependent endothelial dysfunction in non-obese subjects. This effect may be masked by excessive dysregulation of metabolic factors in obese individuals.
AB - Endothelial dysfunction worsens when body mass index (BMI) increases. Pannexin1 (Panx1) ATP release channels regulate endothelial function and lipid homeostasis in mice. We investigated whether the Panx1-400A>C single nucleotide polymorphism (SNP), encoding for a gain-of-function channel, associates with endothelial dysfunction in non-obese and obese individuals. Myocardial blood flow (MBF) was measured by 13 N-ammonia positron emission/computed tomography at rest, during cold pressor test (CPT) or dipyridamole-induced hyperemia. Myocardial flow reserve (MFR) and endothelial function were compared in 43 non-obese (BMI < 30 kg/m2) vs. 29 obese (BMI ≥ 30 kg/m2) participants and genotyping for the Panx1-400A>C SNP was performed. Groups comprised subjects homozygous for the C allele (n = 40) vs. subjects with at least one A allele (n = 32). MBF (during CPT or hyperemia), MFR and endothelial function correlated negatively with BMI in the full cohort. BMI correlated negatively with MFR and endothelial function in non-obese Panx1-400C subjects, but not in Panx1-400A individuals nor in obese groups. BMI correlated positively with serum triglycerides, insulin or HOMA. MFR correlated negatively with these factors in non-obese Panx1-400C but not in Panx1-400A individuals. Here, we demonstrated that Panx1-400C SNP predisposes to BMI-dependent endothelial dysfunction in non-obese subjects. This effect may be masked by excessive dysregulation of metabolic factors in obese individuals.
KW - Endothelial function
KW - Obesity
KW - Panx1
KW - Polymorphism
UR - http://www.scopus.com/inward/record.url?scp=85079058576&partnerID=8YFLogxK
U2 - 10.3390/biom10020208
DO - 10.3390/biom10020208
M3 - Article
C2 - 32023876
AN - SCOPUS:85079058576
SN - 2218-273X
VL - 10
JO - Biomolecules
JF - Biomolecules
IS - 2
M1 - 208
ER -