Abstract

Purpose To develop a Gamma Knife-based mouse model of late time-to-onset, cerebral radiation necrosis (RN) with serial evaluation by magnetic resonance imaging (MRI) and histology. Methods and Materials Mice were irradiated with the Leksell Gamma Knife® (GK) Perfexion™ (Elekta AB; Stockholm, Sweden) with total single-hemispheric radiation doses (TRD) of 45- to 60-Gy, delivered in one to three fractions. RN was measured using T2-weighted MR images, while confirmation of tissue damage was assessed histologically by hematoxylin & eosin, trichrome, and PTAH staining. Results MRI measurements demonstrate that TRD is a more important determinant of both time-toonset and progression of RN than fractionation. The development of RN is significantly slower in mice irradiated with 45-Gy than 50- or 60-Gy, where RN development is similar. Irradiated mouse brains demonstrate all of the pathologic features observed clinically in patients with confirmed RN. A semi-quantitative (0 to 3) histologic grading system, capturing both the extent and severity of injury, is described and illustrated. Tissue damage, as assessed by a histologic score, correlates well with total necrotic volume measured by MRI (correlation coefficient = 0.948, with p<0.0001), and with post-irradiation time (correlation coefficient = 0.508, with p<0.0001). Conclusions Following GK irradiation, mice develop late time-to-onset cerebral RN histology mirroring clinical observations. MR imaging provides reliable quantification of the necrotic volume that correlates well with histologic score. This mouse model of RN will provide a platform for mechanism of action studies, the identification of imaging biomarkers of RN, and the development of clinical studies for improved mitigation and neuroprotection.

Original languageEnglish
Article numbere0139596
JournalPloS one
Volume10
Issue number10
DOIs
StatePublished - Oct 6 2015

Fingerprint

Dive into the research topics of 'A gamma-knife-enabled mouse model of cerebral single-hemisphere delayed radiation necrosis'. Together they form a unique fingerprint.

Cite this