Abstract
Background: Genome-wide association studies (GWAS) identify regions of the genome that are associated with particular traits, but do not typically identify specific causative genetic elements. For example, while a large number of single nucleotide polymorphisms associated with type 2 diabetes (T2D) and related traits have been identified by human GWAS, only a few genes have functional evidence to support or to rule out a role in cellular metabolism or dietary interactions. Here, we use a recently developed Drosophila model in which high-sucrose feeding induces phenotypes similar to T2D to assess orthologs of human GWAS-identified candidate genes for risk of T2D and related traits.Results: Disrupting orthologs of certain T2D candidate genes (HHEX, THADA, PPARG, KCNJ11) led to sucrose-dependent toxicity. Tissue-specific knockdown of the HHEX ortholog dHHEX (CG7056) directed metabolic defects and enhanced lethality; for example, fat-body-specific loss of dHHEX led to increased hemolymph glucose and reduced insulin sensitivity.Conclusion: Candidate genes identified in human genetic studies of metabolic traits can be prioritized and functionally characterized using a simple Drosophila approach. To our knowledge, this is the first large-scale effort to study the functional interaction between GWAS-identified candidate genes and an environmental risk factor such as diet in a model organism system.
Original language | English |
---|---|
Article number | 136 |
Journal | BMC genomics |
Volume | 14 |
Issue number | 1 |
DOIs | |
State | Published - Feb 27 2013 |
Keywords
- Diabetes mellitus, type 2
- Drosophila melanogaster
- Dyslipidemias
- Genome-wide association study
- HHEX protein, Human
- High-throughput screening assays
- Hyperglycemia
- Phylogeny
- Reverse genetics