TY - JOUR
T1 - A Dose Accumulation Assessment of Alignment Errors During Spatially Fractionated Radiation Therapy
AU - Ginn, John
AU - Duriseti, Sai
AU - Mazur, Thomas
AU - Spraker, Matthew
AU - Kavanaugh, James
N1 - Publisher Copyright:
© 2023 American Society for Radiation Oncology
PY - 2024/7/1
Y1 - 2024/7/1
N2 - Purpose: Spatially fractionated radiation therapy (SFRT) techniques produce high-dose peaks and low-dose valleys within a tumor. Lattice stereotactic body radiation therapy (SBRT) is a form a SFRT delivered across 5 fractions. Because of the high spatial dose gradients associated with SFRT, it is critical for fractionated SFRT patients to be aligned correctly for treatment. Here we investigate the dosimetric effect of daily alignment uncertainty through a dose accumulation study. Methods and Materials: Dose accumulation was retrospectively performed for 10 patients enrolled on a phase 1 trial. Lattice stereotactic body radiation therapy was completed in 5 fractions with 20 Gy prescribed to the entire tumor and a simultaneous integrated boost of 66.7 Gy prescribed to a set of regularly spaced high-dose spheres. Daily alignment error was quantified through manually selected landmarks in both the planning computed tomography scan and daily cone beam computed tomography. The dosimetric effect of alignment errors was quantified by translating the isocenter in the treatment planning system by the daily average alignment error. Large errors were simulated by translating isocenter 5 and 10 mm for 1 and 2 fractions, independently assessing errors in the superior-inferior and axial directions. The reduction of dose gradients was quantified using the dose ratio (DR) of the mean dose in the high-dose and low-dose spheres. Results: The average alignment error was 1.8 mm across the patient population resulting in minor smoothing of the high- and low-dose distributions in the dose accumulation. Quantitatively, the DR decreased from 3.42 to 3.32 (P = .093) in the dose accumulation study. The simulated worst case was an inferior-superior shift of 10 mm for 2 fractions where the average DR decreased to 2.72 (P = .0001). Conclusions: The dose accumulation study revealed on average DR only decreased from 3.42 to 3.32. However, setup errors >5 mm resulted in larger dosimetric degradation, reflecting a larger effect for individual high-dose spheres within regions exhibiting larger displacements.
AB - Purpose: Spatially fractionated radiation therapy (SFRT) techniques produce high-dose peaks and low-dose valleys within a tumor. Lattice stereotactic body radiation therapy (SBRT) is a form a SFRT delivered across 5 fractions. Because of the high spatial dose gradients associated with SFRT, it is critical for fractionated SFRT patients to be aligned correctly for treatment. Here we investigate the dosimetric effect of daily alignment uncertainty through a dose accumulation study. Methods and Materials: Dose accumulation was retrospectively performed for 10 patients enrolled on a phase 1 trial. Lattice stereotactic body radiation therapy was completed in 5 fractions with 20 Gy prescribed to the entire tumor and a simultaneous integrated boost of 66.7 Gy prescribed to a set of regularly spaced high-dose spheres. Daily alignment error was quantified through manually selected landmarks in both the planning computed tomography scan and daily cone beam computed tomography. The dosimetric effect of alignment errors was quantified by translating the isocenter in the treatment planning system by the daily average alignment error. Large errors were simulated by translating isocenter 5 and 10 mm for 1 and 2 fractions, independently assessing errors in the superior-inferior and axial directions. The reduction of dose gradients was quantified using the dose ratio (DR) of the mean dose in the high-dose and low-dose spheres. Results: The average alignment error was 1.8 mm across the patient population resulting in minor smoothing of the high- and low-dose distributions in the dose accumulation. Quantitatively, the DR decreased from 3.42 to 3.32 (P = .093) in the dose accumulation study. The simulated worst case was an inferior-superior shift of 10 mm for 2 fractions where the average DR decreased to 2.72 (P = .0001). Conclusions: The dose accumulation study revealed on average DR only decreased from 3.42 to 3.32. However, setup errors >5 mm resulted in larger dosimetric degradation, reflecting a larger effect for individual high-dose spheres within regions exhibiting larger displacements.
UR - http://www.scopus.com/inward/record.url?scp=85184185682&partnerID=8YFLogxK
U2 - 10.1016/j.prro.2023.11.015
DO - 10.1016/j.prro.2023.11.015
M3 - Article
C2 - 38081359
AN - SCOPUS:85184185682
SN - 1879-8500
VL - 14
SP - e283-e290
JO - Practical Radiation Oncology
JF - Practical Radiation Oncology
IS - 4
ER -