Abstract
The bovine cation-dependent mannose 6-phosphate receptor (CD-MPR) is a type 1 transmembrane protein that cycles between the trans-Golgi network, endosomes, and the plasma membrane. When the terminal 40 residues were deleted from the 67-amino acid cytoplasmic tail of the CD-MPR, the half-life of the receptor was drastically decreased and the mutant receptor was recovered in lysosomes. Analysis of additional cytoplasmic tail truncation mutants and alanine-scanning mutants implicated amino acids 34-39 as being critical for avoidance of lysosomal degradation. The cytoplasmic tail of the CD-MPR was partially effective in preventing the lysosomal membrane protein Lamp1 from entering lysosomes. Complete exclusion required both the CD-MPR cytoplasmic tail and transmembrane domain. The transmembrane domain alone had just a minor effect on the distribution of Lamp1. These findings indicate that the cytoplasmic tail of the CD-MPR contains a signal that prevents the receptor from trafficking to lysosomes. The transmembrane domain of the CD-MPR also contributes to this function.
Original language | English |
---|---|
Pages (from-to) | 1297-1306 |
Number of pages | 10 |
Journal | Journal of Cell Biology |
Volume | 130 |
Issue number | 6 |
State | Published - Sep 1995 |