A deep learning system accurately classifies primary and metastatic cancers using passenger mutation patterns

PCAWG Tumor Subtypes and Clinical Translation Working Group, PCAWG Consortium, Wei Jiao, Gurnit Atwal, Paz Polak, Rosa Karlic, Edwin Cuppen, Fatima Al-Shahrour, Gurnit Atwal, Peter J. Bailey, Andrew V. Biankin, Paul C. Boutros, Peter J. Campbell, David K. Chang, Susanna L. Cooke, Vikram Deshpande, Bishoy M. Faltas, William C. Faquin, Levi Garraway, Gad GetzSean M. Grimmond, Syed Haider, Katherine A. Hoadley, Wei Jiao, Vera B. Kaiser, Rosa Karlic, Mamoru Kato, Kirsten Kübler, Alexander J. Lazar, Constance H. Li, David N. Louis, Adam Margolin, Sancha Martin, Hardeep K. Nahal-Bose, G. Petur Nielsen, Serena Nik-Zainal, Larsson Omberg, Christine P’ng, Marc D. Perry, Paz Polak, Esther Rheinbay, Mark A. Rubin, Colin A. Semple, Dennis C. Sgroi, Tatsuhiro Shibata, Reiner Siebert, Jaclyn Smith, Lincoln D. Stein, Miranda D. Stobbe, Ren X. Sun, Kevin Thai, Derek W. Wright, Chin Lee Wu, Ke Yuan, Junjun Zhang, Alexandra Danyi, Jeroen de Ridder, Carla van Herpen, Martijn P. Lolkema, Neeltje Steeghs, Gad Getz, Quaid D. Morris, Lauri A. Aaltonen, Federico Abascal, Adam Abeshouse, Hiroyuki Aburatani, David J. Adams, Nishant Agrawal, Keun Soo Ahn, Sung Min Ahn, Hiroshi Aikata, Rehan Akbani, Kadir C. Akdemir, Hikmat Al-Ahmadie, Sultan T. Al-Sedairy, Fatima Al-Shahrour, Malik Alawi, Monique Albert, Kenneth Aldape, Ludmil B. Alexandrov, Adrian Ally, Kathryn Alsop, Eva G. Alvarez, Fernanda Amary, Samirkumar B. Amin, Brice Aminou, Ole Ammerpohl, Matthew J. Anderson, Yeng Ang, Davide Antonello, Pavana Anur, Samuel Aparicio, Elizabeth L. Appelbaum, Yasuhito Arai, Axel Aretz, Koji Arihiro, Shun ichi Ariizumi, Joshua Armenia, Laurent Arnould, Sylvia Asa, Yassen Assenov, Gurnit Atwal, Sietse Aukema, J. Todd Auman, Miriam R.R. Aure, Philip Awadalla, Marta Aymerich, Gary D. Bader, Adrian Baez-Ortega, Matthew H. Bailey, Peter J. Bailey, Miruna Balasundaram, Saianand Balu, Pratiti Bandopadhayay, Rosamonde E. Banks, Stefano Barbi, Andrew P. Barbour, Jonathan Barenboim, Jill Barnholtz-Sloan, Hugh Barr, Elisabet Barrera, John Bartlett, Javier Bartolome, Claudio Bassi, Oliver F. Bathe, Daniel Baumhoer, Prashant Bavi, Stephen B. Baylin, Wojciech Bazant, Duncan Beardsmore, Timothy A. Beck, Sam Behjati, Andreas Behren, Beifang Niu, Cindy Bell, Sergi Beltran, Christopher Benz, Andrew Berchuck, Anke K. Bergmann, Erik N. Bergstrom, Benjamin P. Berman, Daniel M. Berney, Stephan H. Bernhart, Rameen Beroukhim, Mario Berrios, Samantha Bersani, Johanna Bertl, Miguel Betancourt, Vinayak Bhandari, Shriram G. Bhosle, Andrew V. Biankin, Matthias Bieg, Darell Bigner, Hans Binder, Ewan Birney, Michael Birrer, Nidhan K. Biswas, Bodil Bjerkehagen, Tom Bodenheimer, Lori Boice, Giada Bonizzato, Johann S. De Bono, Arnoud Boot, Moiz S. Bootwalla, Ake Borg, Arndt Borkhardt, Keith A. Boroevich, Ivan Borozan, Christoph Borst, Marcus Bosenberg, Mattia Bosio, Jacqueline Boultwood, Guillaume Bourque, Paul C. Boutros, G. Steven Bova, David T. Bowen, Reanne Bowlby, David D.L. Bowtell, Sandrine Boyault, Rich Boyce, Jeffrey Boyd, Alvis Brazma, Paul Brennan, Daniel S. Brewer, Arie B. Brinkman, Robert G. Bristow, Russell R. Broaddus, Jane E. Brock, Malcolm Brock, Annegien Broeks, Angela N. Brooks, Denise Brooks, Benedikt Brors, Li Ding, Lucinda A. Fulton, Robert S. Fulton, Ramaswamy Govindan, Reyka Jayasinghe, Tim Ley, Christopher A. Miller, David Mutch, Michael C. Wendl

Research output: Contribution to journalArticlepeer-review

134 Scopus citations

Abstract

In cancer, the primary tumour’s organ of origin and histopathology are the strongest determinants of its clinical behaviour, but in 3% of cases a patient presents with a metastatic tumour and no obvious primary. Here,as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium, we train a deep learning classifier to predict cancer type based on patterns of somatic passenger mutations detected in whole genome sequencing (WGS) of 2606 tumours representing 24 common cancer types produced by the PCAWG Consortium. Our classifier achieves an accuracy of 91% on held-out tumor samples and 88% and 83% respectively on independent primary and metastatic samples, roughly double the accuracy of trained pathologists when presented with a metastatic tumour without knowledge of the primary. Surprisingly, adding information on driver mutations reduced accuracy. Our results have clinical applicability, underscore how patterns of somatic passenger mutations encode the state of the cell of origin, and can inform future strategies to detect the source of circulating tumour DNA.

Original languageEnglish
Article number728
JournalNature communications
Volume11
Issue number1
DOIs
StatePublished - Dec 1 2020

Fingerprint

Dive into the research topics of 'A deep learning system accurately classifies primary and metastatic cancers using passenger mutation patterns'. Together they form a unique fingerprint.

Cite this