A convenient, reliable, and fast acoustic pressure field measurement method for magnetic resonance-guided high-intensity focused ultrasound systems with phased array transducers

Satya V.V.N. Kothapalli, Ari Partanen, Lifei Zhu, Michael B. Altman, H. Michael Gach, Dennis E. Hallahan, Hong Chen

Research output: Contribution to journalArticlepeer-review

4 Scopus citations

Abstract

Background: With the expanding applications of magnetic resonance-guided high-intensity focused ultrasound (MR-HIFU), there is an urgent need for a convenient, reliable, and fast acoustic pressure field measurement method to aid treatment protocol design, ensure consistent and safe operation of the transducer, and facilitate regulatory approval of new techniques. Herein, we report a method for acoustic pressure field characterization of MR-HIFU systems with multi-element phased array transducers. This method integrates fiber-optic hydrophone measurements and electronic steering of the ultrasound beam with MRI-assisted HIFU focus alignment to the fiber tip. Methods: A clinical MR-HIFU system (Sonalleve V2, Profound Medical Inc., Mississauga, Canada) was used to assess the proposed method. A fiber-optic hydrophone was submerged in a degassed water bath, and the fiber tip location was traced using MRI. Subsequently, the nominal transducer focal point indicated on the MR-HIFU therapy planning software was positioned at the fiber tip, and the HIFU focus was electronically steered around the fiber tip within a 3D volume for 3D pressure field mapping, eliminating the need for an additional, expensive, and MRI-compatible 3D positioning stage. The peak positive and negative pressures were measured at the focus and validated using a standard hydrophone measurement setup outside the MRI magnet room. Results: We found that the initial MRI-assisted HIFU focus alignment had an average offset of 2.23±1.33mm from the fiber tip as identified by the 3D pressure field mapping. MRI guidance and electronic beam steering allowed 3D focus localization within ~1h, i.e., faster than the typical time required using the standard laboratory setup (~3-4h). Acoustic pressures measured using the proposed method were not significantly different from those obtained with the standard laboratory hydrophone measurements. Conclusions: In conclusion, our method offers a convenient, reliable, and fast acoustic pressure field characterization tool for MR-HIFU systems with phased array transducers.

Original languageEnglish
Article number5
JournalJournal of Therapeutic Ultrasound
Volume6
Issue number1
DOIs
StatePublished - Jul 2 2018

Keywords

  • Acoustic characterization
  • Acoustic field mapping
  • Fiber-optic hydrophone
  • MR-HIFU
  • MR-guided high-intensity focused ultrasound
  • Phased array transducer

Fingerprint Dive into the research topics of 'A convenient, reliable, and fast acoustic pressure field measurement method for magnetic resonance-guided high-intensity focused ultrasound systems with phased array transducers'. Together they form a unique fingerprint.

Cite this