TY - JOUR
T1 - A comprehensive head-to-head comparison of key plasma phosphorylated tau 217 biomarker tests
AU - Warmenhoven, Noëlle
AU - Salvadó, Gemma
AU - Janelidze, Shorena
AU - Mattsson-Carlgren, Niklas
AU - Bali, Divya
AU - Orduña Dolado, Anna
AU - Kolb, Hartmuth
AU - Triana-Baltzer, Gallen
AU - Barthélemy, Nicolas R.
AU - Schindler, Suzanne E.
AU - Aschenbrenner, Andrew J.
AU - Raji, Cyrus A.
AU - Benzinger, Tammie L.S.
AU - Morris, John C.
AU - Ibanez, Laura
AU - Timsina, Jigyasha
AU - Cruchaga, Carlos
AU - Bateman, Randall J.
AU - Ashton, Nicholas
AU - Arslan, Burak
AU - Zetterberg, Henrik
AU - Blennow, Kaj
AU - Binette, Alexa Pichet
AU - Hansson, Oskar
N1 - Publisher Copyright:
© 2024 The Author(s). Published by Oxford University Press on behalf of the Guarantors of Brain.
PY - 2025/2/1
Y1 - 2025/2/1
N2 - Plasma phosphorylated-tau 217 (p-tau217) is currently the most promising biomarker for reliable detection of Alzheimer's disease pathology. Various p-tau217 assays have been developed, but their relative performance is unclear. We compared key plasma p-tau217 tests using cross-sectional and longitudinal measures of amyloid-β (Aβ)-PET, tau-PET and cognition as outcomes and benchmarked them against CSF biomarker tests. Samples from 998 individuals [mean (range) age 68.5 (20.0-92.5) years, 53% female] from the Swedish BioFINDER-2 cohort, including both cognitively unimpaired and cognitively impaired individuals, were analysed. Plasma p-tau217 was measured with mass spectrometry assays [the ratio between phosphorylated and non-phosphorylated (%p-tau217WashU) and p-tau217WashU] and with immunoassays (p-tau217Lilly, p-tau217Janssen and p-tau217ALZpath). CSF biomarkers included p-tau217Lilly, the US Food and Drug Administration-approved p-tau181/Aβ42Elecsys, and p-tau181Elecsys. All plasma p-tau217 tests exhibited a high ability to detect abnormal Aβ-PET [area under the curve (AUC) range: 0.91-0.96] and tau-PET (AUC range: 0.94-0.97). Plasma %p-tau217WashU had the highest performance, with significantly higher AUCs than all the immunoassays (Pdiff < 0.007). For detecting Aβ-PET status, %p-tau217WashU had an accuracy of 0.93 (immunoassays: 0.83-0.88), sensitivity of 0.91 (immunoassays: 0.84-0.87) and a specificity of 0.94 (immunoassays: 0.85-0.89). Among immunoassays, p-tau217Lilly and plasma p-tau217ALZpath had higher AUCs than plasma p-tau217Janssen for Aβ-PET status (Pdiff < 0.006), and p-tau217Lilly outperformed plasma p-tau217ALZpath for tau-PET status (Pdiff = 0.025). Plasma %p-tau217WashU exhibited stronger associations with all PET load outcomes compared with immunoassays; baseline Aβ-PET load (R2: 0.72; immunoassays: 0.47-0.58; Pdiff < 0.001), baseline tau-PET load (R2: 0.51; immunoassays: 0.38-0.45; Pdiff < 0.001), longitudinal Aβ-PET load (R2: 0.53; immunoassays: 0.31-0.38; Pdiff < 0.001) and longitudinal tau-PET load (R2: 0.50; immunoassays: 0.35-0.43; Pdiff < 0.014). Among immunoassays, plasma p-tau217Lilly was more associated with Aβ-PET load than plasma p-tau217Janssen (Pdiff < 0.020) and with tau-PET load than both plasma p-tau217Janssen and plasma p-tau217ALZpath (all Pdiff < 0.010). Plasma %p-tau217 also correlated more strongly with baseline cognition (Mini-Mental State Examination) than all immunoassays (R2: %p-tau217WashU: 0.33; immunoassays: 0.27-0.30; Pdiff < 0.024). The main results were replicated in an external cohort from Washington University in St Louis (n = 219). Finally, p-tau217NULISA showed similar performance to other immunoassays in subsets of both cohorts. In summary, both mass spectrometry- and immunoassay-based p-tau217 tests generally perform well in identifying Aβ-PET, tau-PET and cognitive abnormalities, but %p-tau217WashU performed significantly better than all the examined immunoassays. Plasma %p-tau217 may be considered as a stand-alone confirmatory test for Alzheimer's disease pathology, whereas some immunoassays might be better suited as triage tests where positive results are confirmed with a second test, which needs to be determined by future reviews incorporating results from multiple cohorts.
AB - Plasma phosphorylated-tau 217 (p-tau217) is currently the most promising biomarker for reliable detection of Alzheimer's disease pathology. Various p-tau217 assays have been developed, but their relative performance is unclear. We compared key plasma p-tau217 tests using cross-sectional and longitudinal measures of amyloid-β (Aβ)-PET, tau-PET and cognition as outcomes and benchmarked them against CSF biomarker tests. Samples from 998 individuals [mean (range) age 68.5 (20.0-92.5) years, 53% female] from the Swedish BioFINDER-2 cohort, including both cognitively unimpaired and cognitively impaired individuals, were analysed. Plasma p-tau217 was measured with mass spectrometry assays [the ratio between phosphorylated and non-phosphorylated (%p-tau217WashU) and p-tau217WashU] and with immunoassays (p-tau217Lilly, p-tau217Janssen and p-tau217ALZpath). CSF biomarkers included p-tau217Lilly, the US Food and Drug Administration-approved p-tau181/Aβ42Elecsys, and p-tau181Elecsys. All plasma p-tau217 tests exhibited a high ability to detect abnormal Aβ-PET [area under the curve (AUC) range: 0.91-0.96] and tau-PET (AUC range: 0.94-0.97). Plasma %p-tau217WashU had the highest performance, with significantly higher AUCs than all the immunoassays (Pdiff < 0.007). For detecting Aβ-PET status, %p-tau217WashU had an accuracy of 0.93 (immunoassays: 0.83-0.88), sensitivity of 0.91 (immunoassays: 0.84-0.87) and a specificity of 0.94 (immunoassays: 0.85-0.89). Among immunoassays, p-tau217Lilly and plasma p-tau217ALZpath had higher AUCs than plasma p-tau217Janssen for Aβ-PET status (Pdiff < 0.006), and p-tau217Lilly outperformed plasma p-tau217ALZpath for tau-PET status (Pdiff = 0.025). Plasma %p-tau217WashU exhibited stronger associations with all PET load outcomes compared with immunoassays; baseline Aβ-PET load (R2: 0.72; immunoassays: 0.47-0.58; Pdiff < 0.001), baseline tau-PET load (R2: 0.51; immunoassays: 0.38-0.45; Pdiff < 0.001), longitudinal Aβ-PET load (R2: 0.53; immunoassays: 0.31-0.38; Pdiff < 0.001) and longitudinal tau-PET load (R2: 0.50; immunoassays: 0.35-0.43; Pdiff < 0.014). Among immunoassays, plasma p-tau217Lilly was more associated with Aβ-PET load than plasma p-tau217Janssen (Pdiff < 0.020) and with tau-PET load than both plasma p-tau217Janssen and plasma p-tau217ALZpath (all Pdiff < 0.010). Plasma %p-tau217 also correlated more strongly with baseline cognition (Mini-Mental State Examination) than all immunoassays (R2: %p-tau217WashU: 0.33; immunoassays: 0.27-0.30; Pdiff < 0.024). The main results were replicated in an external cohort from Washington University in St Louis (n = 219). Finally, p-tau217NULISA showed similar performance to other immunoassays in subsets of both cohorts. In summary, both mass spectrometry- and immunoassay-based p-tau217 tests generally perform well in identifying Aβ-PET, tau-PET and cognitive abnormalities, but %p-tau217WashU performed significantly better than all the examined immunoassays. Plasma %p-tau217 may be considered as a stand-alone confirmatory test for Alzheimer's disease pathology, whereas some immunoassays might be better suited as triage tests where positive results are confirmed with a second test, which needs to be determined by future reviews incorporating results from multiple cohorts.
KW - Alzheimer's disease
KW - CSF biomarkers
KW - p-tau217
KW - plasma biomarkers
UR - http://www.scopus.com/inward/record.url?scp=85212769558&partnerID=8YFLogxK
U2 - 10.1093/brain/awae346
DO - 10.1093/brain/awae346
M3 - Article
C2 - 39468767
AN - SCOPUS:85212769558
SN - 0006-8950
VL - 148
SP - 416
EP - 431
JO - Brain
JF - Brain
IS - 2
ER -