A compact high energy camera for the cherenkov telescope array

FOR THE CTA CONSORTIUM.

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

7 Scopus citations

Abstract

The Compact High Energy Camera (CHEC) is a camera-development project involving UK, US, Japanese and Dutch institutes for the dual-mirror Small-Sized Telescopes (SST-2M) of the Cherenkov Telescope Array (CTA). Two CHEC prototypes, based on different photosensors are funded and will be assembled and tested in the UK over the next ≈18 months. CHEC is designed to record flashes of Cherenkov light lasting from a few to a hundred nanoseconds, with typical RMS image width and length of ∼ 0.2 × 1.0, and has a 9 field of view. The physical camera geometry is dictated by the telescope optics: a curved focal surface with radius of curvature 1 m and diameter ∼35 cm is required. CHEC is designed to work with both the ASTRI and GATE SST-2M telescope structures and will include an internal LED flasher system for calibration. The first CHEC prototype will be based on multi-anode photomultipliers (MAPMs) and the second on silicon photomultipliers (SiPMs or MPPCs). The first prototype will soon be installed on the ASTRI SST-2M prototype structure on Mt. Etna.

Original languageEnglish
Title of host publicationProceedings of the 33rd International Cosmic Rays Conference, ICRC 2013
PublisherSociedade Brasileira de Fisica
ISBN (Electronic)9788589064293
StatePublished - 2013
Event33rd International Cosmic Rays Conference, ICRC 2013 - Rio de Janeiro, Brazil
Duration: Jul 2 2013Jul 9 2013

Publication series

NameProceedings of the 33rd International Cosmic Rays Conference, ICRC 2013
Volume2013-October

Conference

Conference33rd International Cosmic Rays Conference, ICRC 2013
Country/TerritoryBrazil
CityRio de Janeiro
Period07/2/1307/9/13

Keywords

  • Cherenkov Telescope Array
  • Gamma-rays
  • Instrumentation

Fingerprint

Dive into the research topics of 'A compact high energy camera for the cherenkov telescope array'. Together they form a unique fingerprint.

Cite this