TY - JOUR
T1 - A Bayesian Network to Predict the Risk of Post Influenza Vaccination Guillain-Barré Syndrome:Development and Validation Study
AU - Huang, Yun
AU - Luo, Chongliang
AU - Jiang, Ying
AU - Du, Jingcheng
AU - Tao, Cui
AU - Chen, Yong
AU - Hao, Yuantao
N1 - Publisher Copyright:
© 2022 JMIR Publications Inc.. All Rights Reserved.
PY - 2022/3
Y1 - 2022/3
N2 - Background: Identifying the key factors of Guillain-Barré syndrome (GBS) and predicting its occurrence are vital for improving the prognosis of patients with GBS. However, there are scarcely any publications on a forewarning model of GBS. A Bayesian network (BN) model, which is known to be an accurate, interpretable, and interaction-sensitive graph model in many similar domains, is worth trying in GBS risk prediction. Objective: The aim of this study is to determine the most significant factors of GBS and further develop and validate a BN model for predicting GBS risk. Methods: Large-scale influenza vaccine postmarketing surveillance data, including 79,165 US (obtained from the Vaccine Adverse Event Reporting System between 1990 and 2017) and 12,495 European (obtained from the EudraVigilance system between 2003 and 2016) adverse events (AEs) reports, were extracted for model development and validation. GBS, age, gender, and the top 50 prevalent AEs were included for initial BN construction using the R package bnlearn. Results: Age, gender, and 10 AEs were identified as the most significant factors of GBS. The posttest probability of GBS suggested that male vaccinees aged 50-64 years and without erythema should be on the alert or be warned by clinicians about an increased risk of GBS, especially when they also experience symptoms of asthenia, hypesthesia, muscular weakness, or paresthesia. The established BN model achieved an area under the receiver operating characteristic curve of 0.866 (95% CI 0.865-0.867), sensitivity of 0.752 (95% CI 0.749-0.756), specificity of 0.882 (95% CI 0.879-0.885), and accuracy of 0.882 (95% CI 0.879-0.884) for predicting GBS risk during the internal validation and obtained values of 0.829, 0.673, 0.854, and 0.843 for area under the receiver operating characteristic curve, sensitivity, specificity, and accuracy, respectively, during the external validation. Conclusions: The findings of this study illustrated that a BN model can effectively identify the most significant factors of GBS, improve understanding of the complex interactions among different postvaccination symptoms through its graphical representation, and accurately predict the risk of GBS. The established BN model could further assist clinical decision-making by providing an estimated risk of GBS for a specific vaccinee or be developed into an open-access platform for vaccinees' self-monitoring.
AB - Background: Identifying the key factors of Guillain-Barré syndrome (GBS) and predicting its occurrence are vital for improving the prognosis of patients with GBS. However, there are scarcely any publications on a forewarning model of GBS. A Bayesian network (BN) model, which is known to be an accurate, interpretable, and interaction-sensitive graph model in many similar domains, is worth trying in GBS risk prediction. Objective: The aim of this study is to determine the most significant factors of GBS and further develop and validate a BN model for predicting GBS risk. Methods: Large-scale influenza vaccine postmarketing surveillance data, including 79,165 US (obtained from the Vaccine Adverse Event Reporting System between 1990 and 2017) and 12,495 European (obtained from the EudraVigilance system between 2003 and 2016) adverse events (AEs) reports, were extracted for model development and validation. GBS, age, gender, and the top 50 prevalent AEs were included for initial BN construction using the R package bnlearn. Results: Age, gender, and 10 AEs were identified as the most significant factors of GBS. The posttest probability of GBS suggested that male vaccinees aged 50-64 years and without erythema should be on the alert or be warned by clinicians about an increased risk of GBS, especially when they also experience symptoms of asthenia, hypesthesia, muscular weakness, or paresthesia. The established BN model achieved an area under the receiver operating characteristic curve of 0.866 (95% CI 0.865-0.867), sensitivity of 0.752 (95% CI 0.749-0.756), specificity of 0.882 (95% CI 0.879-0.885), and accuracy of 0.882 (95% CI 0.879-0.884) for predicting GBS risk during the internal validation and obtained values of 0.829, 0.673, 0.854, and 0.843 for area under the receiver operating characteristic curve, sensitivity, specificity, and accuracy, respectively, during the external validation. Conclusions: The findings of this study illustrated that a BN model can effectively identify the most significant factors of GBS, improve understanding of the complex interactions among different postvaccination symptoms through its graphical representation, and accurately predict the risk of GBS. The established BN model could further assist clinical decision-making by providing an estimated risk of GBS for a specific vaccinee or be developed into an open-access platform for vaccinees' self-monitoring.
KW - Bayesian network
KW - Guillain-Barré syndrome
KW - adverse events
KW - risk prediction
KW - trivalent influenza vaccine
UR - http://www.scopus.com/inward/record.url?scp=85128000537&partnerID=8YFLogxK
U2 - 10.2196/25658
DO - 10.2196/25658
M3 - Article
C2 - 35333192
AN - SCOPUS:85128000537
SN - 2369-2960
VL - 8
JO - JMIR Public Health and Surveillance
JF - JMIR Public Health and Surveillance
IS - 3
M1 - e25658
ER -