Abstract

Piezoelectricity-driven hot-electron injectors (p-HEI) are used for self-powered monitoring of mechanical activity in biomechanical implants and structures. Previously reported p-HEI devices operate by harvesting energy from a piezoelectric transducer to generate current and voltage references which are then used for initiating and controlling the process of hot-electron injection. As a result, the minimum energy required to activate the device is limited by the power requirements of the reference circuits. In this paper we present a p-HEI device that operates by directly exploiting the self-limiting capability of an energy transducer when driving the process of hot-electron injection in a pMOS floating-gate transistor. As a result, the p-HEI device can activate itself at input power levels less than 5 nW. Using a prototype fabricated in a 0.5- μm bulk CMOS process we validate the functionality of the proposed injector and show that for a fixed input power, its dynamics is quasi-linear with respect to time. The paper also presents measurement results using a cadaver phantom where the fabricated p-HEI device has been integrated with a piezoelectric transducer and is used for self-powered monitoring of mechanical activity.

Original languageEnglish
Article number7470623
Pages (from-to)1143-1151
Number of pages9
JournalIEEE Transactions on Biomedical Circuits and Systems
Volume10
Issue number6
DOIs
StatePublished - Dec 2016

Keywords

  • Biomechanics
  • Health and usage monitoring
  • Hot-electron injection
  • Piezo-floating-gate
  • Self-powered sensors
  • Structural health monitoring

Fingerprint

Dive into the research topics of 'A 5 nW quasi-linear CMOS hot-electron injector for self-powered monitoring of biomechanical strain variations'. Together they form a unique fingerprint.

Cite this