TY - JOUR
T1 - β3 integrin deficiency promotes atherosclerosis and pulmonary inflammation in high-fat-fed, hyperlipidemic mice
AU - Weng, Sherry
AU - Zemany, Laura
AU - Standley, Kara N.
AU - Novack, Deborah V.
AU - La Regina, Marie
AU - Bernal-Mizrachi, Carlos
AU - Coleman, Trey
AU - Semenkovich, Clay F.
PY - 2003/5/27
Y1 - 2003/5/27
N2 - Hyperlipidemia promotes the chronic inflammatory disease atherosclerosis through poorly understood mechanisms. Atherogenic lipoproteins activate platelets, but it is unknown whether platelets contribute to early inflammatory atherosclerotic lesions. To address the role of platelet aggregation in diet-induced vascular disease, we studied β3 integrin-deficient mice (lacking platelet integrin αIIbβ3 and the widely expressed nonplatelet integrin αvβ3) in two models of atherosclerosis, apolipoprotein E (apoE)-null and low-density lipoprotein receptor (LDLR)-null mice. Unexpectedly, a high-fat, Western-type (but not a low-fat) diet caused death in two-thirds of the β3-/--apoE-/- and half of the β3-/-LDLR-/- mice due to noninfectious pneumonitis. In animals from both models surviving high-fat feeding, pneumonitis was absent, but aortic atherosclerosis was 2- to 6-fold greater in β3-/- compared with β+/+ littermates. Expression of CD36, CD40L, and CD40 was increased in lungs of β3-/- LDLR-/- mice. Each was also increased in smooth muscle cells cultured from β3-deficient mice and suppressed by retroviral reconstitution of β3. These data show that the platelet defect caused by αIIbβ3 deficiency does not impair atherosclerotic lesion initiation. They also suggest that αvβ3 has a suppressive effect on inflammation, the loss of which induces atherogenic mediators that are amplified by diet-induced hyperlipidemia.
AB - Hyperlipidemia promotes the chronic inflammatory disease atherosclerosis through poorly understood mechanisms. Atherogenic lipoproteins activate platelets, but it is unknown whether platelets contribute to early inflammatory atherosclerotic lesions. To address the role of platelet aggregation in diet-induced vascular disease, we studied β3 integrin-deficient mice (lacking platelet integrin αIIbβ3 and the widely expressed nonplatelet integrin αvβ3) in two models of atherosclerosis, apolipoprotein E (apoE)-null and low-density lipoprotein receptor (LDLR)-null mice. Unexpectedly, a high-fat, Western-type (but not a low-fat) diet caused death in two-thirds of the β3-/--apoE-/- and half of the β3-/-LDLR-/- mice due to noninfectious pneumonitis. In animals from both models surviving high-fat feeding, pneumonitis was absent, but aortic atherosclerosis was 2- to 6-fold greater in β3-/- compared with β+/+ littermates. Expression of CD36, CD40L, and CD40 was increased in lungs of β3-/- LDLR-/- mice. Each was also increased in smooth muscle cells cultured from β3-deficient mice and suppressed by retroviral reconstitution of β3. These data show that the platelet defect caused by αIIbβ3 deficiency does not impair atherosclerotic lesion initiation. They also suggest that αvβ3 has a suppressive effect on inflammation, the loss of which induces atherogenic mediators that are amplified by diet-induced hyperlipidemia.
UR - http://www.scopus.com/inward/record.url?scp=0037636592&partnerID=8YFLogxK
U2 - 10.1073/pnas.1137612100
DO - 10.1073/pnas.1137612100
M3 - Article
C2 - 12746502
AN - SCOPUS:0037636592
SN - 0027-8424
VL - 100
SP - 6730
EP - 6735
JO - Proceedings of the National Academy of Sciences of the United States of America
JF - Proceedings of the National Academy of Sciences of the United States of America
IS - 11
ER -