Abstract
αE-catenin is an actin-binding protein associated with the E-cadherin-based adherens junction that regulates cell-cell adhesion. Recent studies identified additional E-cadherin-independent roles of αE-catenin in regulating plasma membrane dynamics and cell migration. However, little is known about the roles of αE-catenin in these different cellular processes in vivo during early vertebrate development. Here, we examined the functions of αE-catenin in cell-cell adhesion, cell migration and plasma membrane dynamics during morphogenetic processes that drive epiboly in early Danio rerio (zebrafish) development. We show that depletion of αE-catenin caused a defect in radial intercalation that was associated with decreased cell-cell adhesion, in a similar manner to E-cadherin depletion. Depletion of αE-catenin also caused deep cells to have protracted plasma membrane blebbing, and a defect in plasma membrane recruitment of ERM proteins that are involved in controlling membrane-to-cortex attachment and membrane blebbing. Significantly, depletion of both E-cadherin and αE-catenin suppressed plasma membrane blebbing. We suggest that during radial intercalation the activities of E-cadherin and αE-catenin in the maintenance of membrane-to-cortex attachment are balanced, resulting in stabilization of cell-cell adhesion and suppression of membrane blebbing, thereby enabling proper radial intercalation.
Original language | English |
---|---|
Pages (from-to) | 537-546 |
Number of pages | 10 |
Journal | Development |
Volume | 139 |
Issue number | 3 |
DOIs | |
State | Published - Feb 1 2012 |
Keywords
- Blebbing
- Cell migration
- Cell-cell adhesion
- Epiboly
- Gastrulation
- Zebrafish