Personal profile

Research interests

Hair cells are the sensory receptors of sound, motion, and spatial orientation. Overexposure to loud sounds initiates a series of molecular events in cochlear hair cells that contribute to various hair-cell pathologies: intense noise-exposures induce hair-cell death while moderate-noise exposures contribute to progressive hair-cell synapse loss, postsynaptic retraction, and cochlear nerve degeneration. Our research interests are to understand how specific pathological changes occur in hair cells overexposed to noise by defining the cellular mechanisms driving hair-cell synapse loss and hair-cell death, as well as identifying pathways that promote repair.

My lab address these questions using zebrafish as a model for hearing and deafness. Zebrafish afford a powerful model system to uncover the cellular mechanisms of noiseinduced synaptopathy and hair-cell loss. Zebrafish sensory hair cells are homologous to mammalian hair cells, and there is a high conservation of zebrafish deafness gene function compared with humans. In contrast to other vertebrate model organisms, zebrafish hair cells are optically accessible in whole larvae within the ear and the lateral line organ-a sensory organ used to detect the movement of water. Additionally, zebrafish hair cells are amenable to pharmacological manipulation, allowing for large scale drug screening and subsequent examination of hair-cell morphology and function. Moreover, as zebrafish have an extensive capacity for regeneration of complex tissues, including hair cells and afferent neurons, they can be used to identify molecular pathways that promote synapse regeneration following hair-cell damage.

Mentoring

Health science research greatly benefits from many distinct perspectives. I am committed to fostering an inclusive and diverse lab environment that supports the personal and scientific growth of trainees that have been historically underrepresented in science. As a mentor, I seek out diversity and inclusion training and am striving to continuously improve my efforts toward creating a lab environment that values individuals with diverse backgrounds and experience.   

Available to Mentor:

  • PhD/MSTP Students

Fingerprint

Dive into the research topics where Lavinia Sheets is active. These topic labels come from the works of this person. Together they form a unique fingerprint.
  • 1 Similar Profiles

Collaborations and top research areas from the last five years

Recent external collaboration on country/territory level. Dive into details by clicking on the dots or