• Source: Scopus

Research activity per year

If you made any changes in Pure these will be visible here soon.

Personal profile

Research interests

Throughout my training, I have built a foundation of experience enabling my laboratory to investigate important biological questions by integrating theory and experimental approaches hand in hand. For my undergraduate education. I obtained a Honours Bachelor of Science degree at the University of Toronto in Theoretical Physiology and Mathematics which taught me how to model biological systems using principles of math, physics and chemistry. I was first introduced to membrane proteins in the laboratory of Dr. Peter Backx, where I carried out research on the mathematical modeling of the cardiac action potential as well as experimental. electrophysiological studies of voltage-gated sodium channels. During my PhD with Dr. BenoTt Roux and Dr. Larry Palmer at the Weill Cornell Graduate School of Medical Sciences, I applied these fundamentals to computational studies aimed at investigating how changes in inward rectifier potassium channel sequence leads to changes in function (Robertson and Roux, 2005; Zhang et al., 2004; Robertson et al., 2008; 2012; 2010b). My postdoctoral training with Dr. Chris Miller at HHMI/Brandeis University immersed me in experimental membrane protein biochemistry, investigating the structure and function of anion transporters and channels (Jayaram et al., 2011; Robertson et al., 2010a; Stockbridge et al., 2013). After receiving a K99 award, I studied with Dr. Jeff Gelles at Brandeis University to learn single-molecule fluorescence microscopy and apply this technique to the study of reversible CLC dimerization in lipid bilayers as a model system to investigate the physical driving forces involved in self-assembly of proteins in membranes.

The subject of membrane protein biochemistry is currently primed for a productive combination of theory and experiments. With my background, I am uniquely trained to integrate these areas into one laboratory and overcome the hurdles currently existing in the field while training the next generation of interdisciplinary scientists. In July 2013, I set up my laboratory at the University of Iowa in the Department of Molecular Physiology and Biophysics, and in September 2018, we moved to the Department of Biochemistry and Molecular Biophysics at Washington University. In my lab, we integrate experimental techniques such as biochemistry, electrophysiology, crystallography and single-molecule Total Internal Reflection Fluorescence (TIRFJ microscopy, with theoretical computer modeling, to study membrane protein systems in membranes. We have built our own multi-color co-localization TIRF microscope (Lambda II, and now Ill) following the Gelles lab design, which has fostered numerous collaborations with membrane protein physiologists interested in single-molecule and whole-cell TIRF imaging (e.g. Ahern laboratory, University of Iowa (Leisle et al., 2016); Sah Laboratory, University of Iowa and Washington University, ROl DK106009, NIH/NIDDK; Senes Laboratory CHE-1710183, NSF. University of Wisconsin - Madison).

However, the primary goal of my laboratory is to understand how and why membrane proteins self-assemble (i.e. fold), form stable complexes. and achieve conformational stability inside of the oil-filled cell membrane. This is a challenging, and consequently, poorly understood area that is fundamental to cell biology.


Dive into the research topics where Janice Robertson is active. These topic labels come from the works of this person. Together they form a unique fingerprint.


Recent external collaboration on country level. Dive into details by clicking on the dots.
If you made any changes in Pure these will be visible here soon.