Research output per year
Research output per year
Associate Professor of Biochemistry and Molecular Biophysics
Willing to Mentor
Available to Mentor:
PhD/MSTP Students
Research activity per year
Throughout my training, I have built a foundation of experience enabling my laboratory to investigate important biological questions by integrating theory and experimental approaches hand in hand. For my undergraduate education. I obtained a Honours Bachelor of Science degree at the University of Toronto in Theoretical Physiology and Mathematics which taught me how to model biological systems using principles of math, physics and chemistry. I was first introduced to membrane proteins in the laboratory of Dr. Peter Backx, where I carried out research on the mathematical modeling of the cardiac action potential as well as experimental. electrophysiological studies of voltage-gated sodium channels. During my PhD with Dr. BenoTt Roux and Dr. Larry Palmer at the Weill Cornell Graduate School of Medical Sciences, I applied these fundamentals to computational studies aimed at investigating how changes in inward rectifier potassium channel sequence leads to changes in function (Robertson and Roux, 2005; Zhang et al., 2004; Robertson et al., 2008; 2012; 2010b). My postdoctoral training with Dr. Chris Miller at HHMI/Brandeis University immersed me in experimental membrane protein biochemistry, investigating the structure and function of anion transporters and channels (Jayaram et al., 2011; Robertson et al., 2010a; Stockbridge et al., 2013). After receiving a K99 award, I studied with Dr. Jeff Gelles at Brandeis University to learn single-molecule fluorescence microscopy and apply this technique to the study of reversible CLC dimerization in lipid bilayers as a model system to investigate the physical driving forces involved in self-assembly of proteins in membranes.
The subject of membrane protein biochemistry is currently primed for a productive combination of theory and experiments. With my background, I am uniquely trained to integrate these areas into one laboratory and overcome the hurdles currently existing in the field while training the next generation of interdisciplinary scientists. In July 2013, I set up my laboratory at the University of Iowa in the Department of Molecular Physiology and Biophysics, and in September 2018, we moved to the Department of Biochemistry and Molecular Biophysics at Washington University. In my lab, we integrate experimental techniques such as biochemistry, electrophysiology, crystallography and single-molecule Total Internal Reflection Fluorescence (TIRFJ microscopy, with theoretical computer modeling, to study membrane protein systems in membranes. We have built our own multi-color co-localization TIRF microscope (Lambda II, and now Ill) following the Gelles lab design, which has fostered numerous collaborations with membrane protein physiologists interested in single-molecule and whole-cell TIRF imaging (e.g. Ahern laboratory, University of Iowa (Leisle et al., 2016); Sah Laboratory, University of Iowa and Washington University, ROl DK106009, NIH/NIDDK; Senes Laboratory CHE-1710183, NSF. University of Wisconsin - Madison).
However, the primary goal of my laboratory is to understand how and why membrane proteins self-assemble (i.e. fold), form stable complexes. and achieve conformational stability inside of the oil-filled cell membrane. This is a challenging, and consequently, poorly understood area that is fundamental to cell biology.
Throughout my training, I have become aware of the significant inequities that lead to under-representation of people in science. Not only is this inherently wrong, but it is fundamentally in conflict with the mission of scientific discovery.
The purpose of scientific research is to have the brightest minds study and solve challenging global problems, and this involves people from all backgrounds, not just those with the fewest barriers. Thus, one of my career goals is to correct inequities and foster an environment in which scientists from all backgrounds can excel. In my own lab, this means providing a safe and enriching environment where all people feel accepted. Beyond my lab, I make every effort to promote inclusion and representation of all scientists, pledging gender equity in speaker lists at the conferences that I have been nominated to organize (SGP, GRC, BPS) and providing opportunities for early-career under-represented scientists to attend through invited talks and travel awards. In addition, I was fortunate to be elected as a councilor of the SGP and have been working on the DEI committee to build initiatives such as the Excelsior award for early-career scientists and the Sharona Gordon award for transformational leadership.
Finally, I recognize that success in this area requires educating myself and learning from others who have experienced inequity first hand. I am committed to learning from my colleagues and experts in the field to improve the climate.
Research output: Contribution to journal › Comment/debate
Research output: Contribution to journal › Article › peer-review
Research output: Contribution to journal › Article › peer-review
Research output: Contribution to journal › Article › peer-review
Research output: Contribution to journal › Article › peer-review